Restructuring of Hoeffding Trees for Trapezoidal Data Streams

Christian Schreckenberger, Tim Glockner, H. Stuckenschmidt, Christian Bartelt
{"title":"Restructuring of Hoeffding Trees for Trapezoidal Data Streams","authors":"Christian Schreckenberger, Tim Glockner, H. Stuckenschmidt, Christian Bartelt","doi":"10.1109/ICDMW51313.2020.00064","DOIUrl":null,"url":null,"abstract":"Trapezoidal Data Streams are an emerging topic, where not only the data volume increases, but also the data dimension, i.e. new features emerge. In this paper, we address the challenges that arise from this problem by providing a novel approach to restructure and prune Hoeffding trees. We evaluate our approach on synthetic datasets, where we can show that the approach significantly improves the performance compared to the baseline of an adjusted Hoeffding tree algorithm without restructuring and pruning.","PeriodicalId":426846,"journal":{"name":"2020 International Conference on Data Mining Workshops (ICDMW)","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW51313.2020.00064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Trapezoidal Data Streams are an emerging topic, where not only the data volume increases, but also the data dimension, i.e. new features emerge. In this paper, we address the challenges that arise from this problem by providing a novel approach to restructure and prune Hoeffding trees. We evaluate our approach on synthetic datasets, where we can show that the approach significantly improves the performance compared to the baseline of an adjusted Hoeffding tree algorithm without restructuring and pruning.
梯形数据流Hoeffding树的重构
梯形数据流是一个新兴的话题,它不仅增加了数据量,而且增加了数据维度,即出现了新的特征。在本文中,我们通过提供一种重组和修剪Hoeffding树的新方法来解决这个问题所带来的挑战。我们在合成数据集上评估了我们的方法,在那里我们可以证明,与调整后的Hoeffding树算法的基线相比,该方法在没有重组和修剪的情况下显着提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信