{"title":"Taxonomy of File Fragments Using Gray-Level Co-Occurrence Matrices","authors":"P. P. Pullaperuma, A. Dharmarathne","doi":"10.1109/DICTA.2013.6691534","DOIUrl":null,"url":null,"abstract":"Researches up to data have focused on using non texture based methods in addressing the problem of classifying the data types of file fragments. In this research we considered a file fragment as a 8 bit grayscale image and the Gray Level Co-Occurrence Matrix (GLCM) based method was used to extract textural features. Texture features for fragment dimensions 8 × 8, 16 × 16, 32 × 32 and 64 × 64 and gray level quantizations from 4 to 64 with step increments of 4 were explored. The K nearest neighbor classifier was used as the classifier and the optimal GLCM features for a particular gray level and fragment dimension were determined using Sequential Forward Selection (SFS) algorithm. On the classification of 7 data types, our novel approach reached a maximum overall accuracy of 86.86% in classifying 64 × 64 sized fragments with 12 gray levels.","PeriodicalId":231632,"journal":{"name":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2013.6691534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Researches up to data have focused on using non texture based methods in addressing the problem of classifying the data types of file fragments. In this research we considered a file fragment as a 8 bit grayscale image and the Gray Level Co-Occurrence Matrix (GLCM) based method was used to extract textural features. Texture features for fragment dimensions 8 × 8, 16 × 16, 32 × 32 and 64 × 64 and gray level quantizations from 4 to 64 with step increments of 4 were explored. The K nearest neighbor classifier was used as the classifier and the optimal GLCM features for a particular gray level and fragment dimension were determined using Sequential Forward Selection (SFS) algorithm. On the classification of 7 data types, our novel approach reached a maximum overall accuracy of 86.86% in classifying 64 × 64 sized fragments with 12 gray levels.