Class Balanced Sampling for the Training in GANs

Sanghun Kim, Seungkyu Lee
{"title":"Class Balanced Sampling for the Training in GANs","authors":"Sanghun Kim, Seungkyu Lee","doi":"10.1145/3476124.3488634","DOIUrl":null,"url":null,"abstract":"Recently Top-k fake sample selection has been introduced to provide better gradients for training Generative Adversarial Networks. Since the method does not guarantee class balance of selected samples in class conditional GANs, certain classes can be completely ignored in the training. In this work, we propose class standardized critic score based sample selection which enables class balanced sample selection. Our method achieves improved FID score and Intra-FID score compared to prior Top-k selection.","PeriodicalId":199099,"journal":{"name":"SIGGRAPH Asia 2021 Posters","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2021 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476124.3488634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently Top-k fake sample selection has been introduced to provide better gradients for training Generative Adversarial Networks. Since the method does not guarantee class balance of selected samples in class conditional GANs, certain classes can be completely ignored in the training. In this work, we propose class standardized critic score based sample selection which enables class balanced sample selection. Our method achieves improved FID score and Intra-FID score compared to prior Top-k selection.
gan训练中的类平衡抽样
最近引入了Top-k假样本选择来为训练生成对抗网络提供更好的梯度。由于该方法不能保证在类条件gan中所选样本的类平衡,因此在训练中可以完全忽略某些类。在这项工作中,我们提出了基于班级标准化评论家分数的样本选择,使班级平衡样本选择成为可能。与之前的Top-k选择相比,我们的方法获得了更高的FID评分和Intra-FID评分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信