Rotor position estimation of 6/4 Switched Reluctance Motor using a novel neural network algorithm

M. Marsaline Beno, L. Rajaji, V. M. Varatharaju, Arnold N. Santos
{"title":"Rotor position estimation of 6/4 Switched Reluctance Motor using a novel neural network algorithm","authors":"M. Marsaline Beno, L. Rajaji, V. M. Varatharaju, Arnold N. Santos","doi":"10.1109/IEEEGCC.2011.5752630","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach for estimating the rotor position of a Switched Reluctance Motor (SRM) drive system using the Cascade Correlation Artificial Neural Network Algorithm (CCNNA). This technique estimates rotor position by measuring the three-phase voltages and currents and using magnetic characteristics of the SRM, with the aid of an ANN. The rotor position estimating technique is used in a high-performance sensor less variable speed SRM drive. The results are compared with the measured values, and the error analyses are given to determine the performance of the developed method. The error analyses have shown great accuracy and successful rotor position estimation technique for a 6/4 pole SRM using the cascade correlation algorithm-based ANN.","PeriodicalId":119104,"journal":{"name":"2011 IEEE GCC Conference and Exhibition (GCC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE GCC Conference and Exhibition (GCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEEGCC.2011.5752630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a novel approach for estimating the rotor position of a Switched Reluctance Motor (SRM) drive system using the Cascade Correlation Artificial Neural Network Algorithm (CCNNA). This technique estimates rotor position by measuring the three-phase voltages and currents and using magnetic characteristics of the SRM, with the aid of an ANN. The rotor position estimating technique is used in a high-performance sensor less variable speed SRM drive. The results are compared with the measured values, and the error analyses are given to determine the performance of the developed method. The error analyses have shown great accuracy and successful rotor position estimation technique for a 6/4 pole SRM using the cascade correlation algorithm-based ANN.
基于神经网络的6/4开关磁阻电机转子位置估计
提出了一种利用串级相关人工神经网络算法估计开关磁阻电机(SRM)驱动系统转子位置的新方法。该技术通过测量三相电压和电流,利用SRM的磁特性,在人工神经网络的帮助下估计转子位置。将转子位置估计技术应用于高性能无传感器变速SRM驱动器中。结果与实测值进行了比较,并进行了误差分析,以确定所开发方法的性能。误差分析表明,基于级联相关算法的人工神经网络对6/4极SRM转子位置估计具有很高的精度和成功的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信