Self-motion mechanism of chained spherical grains cells

S. Viridi, N. Nuraini
{"title":"Self-motion mechanism of chained spherical grains cells","authors":"S. Viridi, N. Nuraini","doi":"10.1063/1.4866547","DOIUrl":null,"url":null,"abstract":"Cells are modeled with spherical grains connected each other. Each cell can shrink and swell by transporting its fluid content to other connected neighbor while still maintaining its density at constant value. As a spherical part of a cell swells it gains more pressure from its surrounding, while shrink state gains less pressure. Pressure difference between these two or more parts of cell will create motion force for the cell. For simplicity, cell is considered to have same density as its environment fluid and connections between parts of cell are virtually accommodated by a spring force. This model is also limited to 2-d case. Influence of parameters to cell motion will be presented. One grain cell shows no motion, while two and more grains cell can perform a motion.","PeriodicalId":360136,"journal":{"name":"arXiv: Biological Physics","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Biological Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.4866547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Cells are modeled with spherical grains connected each other. Each cell can shrink and swell by transporting its fluid content to other connected neighbor while still maintaining its density at constant value. As a spherical part of a cell swells it gains more pressure from its surrounding, while shrink state gains less pressure. Pressure difference between these two or more parts of cell will create motion force for the cell. For simplicity, cell is considered to have same density as its environment fluid and connections between parts of cell are virtually accommodated by a spring force. This model is also limited to 2-d case. Influence of parameters to cell motion will be presented. One grain cell shows no motion, while two and more grains cell can perform a motion.
链状球形颗粒细胞的自运动机制
细胞是用相互连接的球形颗粒来建模的。每个细胞可以通过将其流体内容传输到其他连接的相邻细胞而收缩和膨胀,同时仍保持其密度恒定值。当细胞的球形部分膨胀时,它从周围获得更多的压力,而收缩状态获得的压力较小。细胞的这两个或多个部分之间的压力差将为细胞产生运动力。为简单起见,细胞被认为具有与其环境流体相同的密度,细胞各部分之间的连接实际上是由弹簧力调节的。该模型也仅限于二维情况。讨论了参数对细胞运动的影响。一个颗粒细胞不运动,而两个或更多的颗粒细胞可以进行运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信