Feasibility of increase in smoothing-capacitor of battery system for dumping power oscillation in transition to isolated operation of distributed generator
{"title":"Feasibility of increase in smoothing-capacitor of battery system for dumping power oscillation in transition to isolated operation of distributed generator","authors":"T. Kato, M. Hisada, Y. Suzuoki, H. Yamawaki","doi":"10.1109/INTLEC.2008.4664040","DOIUrl":null,"url":null,"abstract":"This study examines the feasibility of increasing a smoothing capacitor of battery system regarding a high power supply in a short period during the transition to isolated operation of distributed generation (DG). By forming a small-scale facility micro-grid (FMG), DG and battery system can be utilized to protect a part of load against a disturbance of utility grid. For damping the power oscillation in FMG, a battery system would be required to supply a high power in a short period. For this purpose, this study simply focuses on the enlargement of capacity of smoothing capacitor, which is necessary for the voltage-type inverter, instead of increasing the DC power output limit of battery itself including DC-DC converter. This study demonstrates the effect of enlarged smoothing capacitor of battery system on suppressing the oscillation of rotational speed of DG when a 100 kW class FMG is disconnected from the utility grid by using a high-speed circuit breaker. The results show that the battery system with the feasibly enlarged capacity of smoothing capacitor can be useful for a high power supply during the transition to isolated operation of FMG.","PeriodicalId":431368,"journal":{"name":"INTELEC 2008 - 2008 IEEE 30th International Telecommunications Energy Conference","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTELEC 2008 - 2008 IEEE 30th International Telecommunications Energy Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTLEC.2008.4664040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This study examines the feasibility of increasing a smoothing capacitor of battery system regarding a high power supply in a short period during the transition to isolated operation of distributed generation (DG). By forming a small-scale facility micro-grid (FMG), DG and battery system can be utilized to protect a part of load against a disturbance of utility grid. For damping the power oscillation in FMG, a battery system would be required to supply a high power in a short period. For this purpose, this study simply focuses on the enlargement of capacity of smoothing capacitor, which is necessary for the voltage-type inverter, instead of increasing the DC power output limit of battery itself including DC-DC converter. This study demonstrates the effect of enlarged smoothing capacitor of battery system on suppressing the oscillation of rotational speed of DG when a 100 kW class FMG is disconnected from the utility grid by using a high-speed circuit breaker. The results show that the battery system with the feasibly enlarged capacity of smoothing capacitor can be useful for a high power supply during the transition to isolated operation of FMG.