{"title":"An efficient method for vision-based fire detection using SVM classification","authors":"Ha Dai Duong, Dao Thanh Tinh","doi":"10.1109/SOCPAR.2013.7054125","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new vision-based algorithm for fire detection problem. The algorithm consists of three main tasks: pixel-based processing to identify potential fire blobs, blob-based statistical feature extraction, and a support vector machine classifier. In pixel-based processing phase, five feature vectors based on RGB color space are used to classify a pixel by using a Bayes classifier to build a potential fire mask (PFM) of image. Next step, a potential fire blob mask (PFBM) is computed by using the difference between two consecutive PFM and a recover technique. In blob-based phase, for each potential blob in a potential fire blobs image (PFBI) an 7-feature vector are evaluated; this vector includes three statistical features of colour, four texture parameters and one shape roundness parameter. Finally, a SVM classifier is designed and trained for distinguish a potential fire blob are fire or fire-like object. Experimental results demonstrate the effectiveness and robustness of the proposed method.","PeriodicalId":315126,"journal":{"name":"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2013.7054125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
In this paper, we present a new vision-based algorithm for fire detection problem. The algorithm consists of three main tasks: pixel-based processing to identify potential fire blobs, blob-based statistical feature extraction, and a support vector machine classifier. In pixel-based processing phase, five feature vectors based on RGB color space are used to classify a pixel by using a Bayes classifier to build a potential fire mask (PFM) of image. Next step, a potential fire blob mask (PFBM) is computed by using the difference between two consecutive PFM and a recover technique. In blob-based phase, for each potential blob in a potential fire blobs image (PFBI) an 7-feature vector are evaluated; this vector includes three statistical features of colour, four texture parameters and one shape roundness parameter. Finally, a SVM classifier is designed and trained for distinguish a potential fire blob are fire or fire-like object. Experimental results demonstrate the effectiveness and robustness of the proposed method.