Neural network based footprint identification without feature extraction

Onur Can Kurban, T. Yıldırım, Emrah Basaran
{"title":"Neural network based footprint identification without feature extraction","authors":"Onur Can Kurban, T. Yıldırım, Emrah Basaran","doi":"10.1109/SIU.2013.6531429","DOIUrl":null,"url":null,"abstract":"In recent years, identification systems with using biometric features are receiving considerable attention. Iris, palmprint, fingerprint and footprint are shown as examples. This paper focused on footprint identification without features extraction. CASIA Database, Dataset-D used for identification database. Dataset-D contain footprint images taken from foot pressure measurement plate. Firtsly, each RGB image converted gray scale and resized the fifth and resized 30×15 matrix. In the end, each 30×15 matrix is converted to 1×450 input array, and simulated by MLP, SVM and Naive-Bayes classifiers. The best result without features extraction achived by MLP classifier.","PeriodicalId":168462,"journal":{"name":"2013 21st Signal Processing and Communications Applications Conference (SIU)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 21st Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2013.6531429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In recent years, identification systems with using biometric features are receiving considerable attention. Iris, palmprint, fingerprint and footprint are shown as examples. This paper focused on footprint identification without features extraction. CASIA Database, Dataset-D used for identification database. Dataset-D contain footprint images taken from foot pressure measurement plate. Firtsly, each RGB image converted gray scale and resized the fifth and resized 30×15 matrix. In the end, each 30×15 matrix is converted to 1×450 input array, and simulated by MLP, SVM and Naive-Bayes classifiers. The best result without features extraction achived by MLP classifier.
基于神经网络的无特征提取足迹识别
近年来,利用生物特征的身份识别系统受到越来越多的关注。以虹膜、掌纹、指纹和足迹为例。本文的重点是足迹识别,但没有进行特征提取。CASIA数据库,使用Dataset-D作为识别数据库。数据集- d包含足底压力测量板上的足迹图像。首先,每个RGB图像转换灰度,并调整第五个和30×15矩阵的大小。最后将每个30×15矩阵转换为1×450输入数组,并通过MLP、SVM和Naive-Bayes分类器进行仿真。在不进行特征提取的情况下,MLP分类器的分类效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信