Research on ink style image generation based on deep learning

Tianyi Zheng, Zhangqin Huang, Runmin Zhang
{"title":"Research on ink style image generation based on deep learning","authors":"Tianyi Zheng, Zhangqin Huang, Runmin Zhang","doi":"10.1117/12.2682550","DOIUrl":null,"url":null,"abstract":"Most of the current existing style transfer methods are based on photographs or Western paintings. Due to the inherent differences between Chinese and Western paintings, direct application of existing algorithms cannot generate satisfactory style transfer results for Chinese ink paintings. Accordingly, this paper proposes a new feedforward style transfer method, called inkStyle, which uses a draw Network to transfer global style patterns at low resolution and a higher resolution details networks to modify local style patterns in a pyramidal manner based on the multi-level Laplacian filtering output of the content image. The experimental results show that the method in the paper performs better and produces better visual results.","PeriodicalId":177416,"journal":{"name":"Conference on Electronic Information Engineering and Data Processing","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Electronic Information Engineering and Data Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2682550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most of the current existing style transfer methods are based on photographs or Western paintings. Due to the inherent differences between Chinese and Western paintings, direct application of existing algorithms cannot generate satisfactory style transfer results for Chinese ink paintings. Accordingly, this paper proposes a new feedforward style transfer method, called inkStyle, which uses a draw Network to transfer global style patterns at low resolution and a higher resolution details networks to modify local style patterns in a pyramidal manner based on the multi-level Laplacian filtering output of the content image. The experimental results show that the method in the paper performs better and produces better visual results.
基于深度学习的水墨风格图像生成研究
目前现有的风格转移方法大多是基于照片或西方绘画。由于中西方绘画的内在差异,直接应用现有的算法无法对中国水墨画产生满意的风格转移结果。据此,本文提出了一种新的前馈风格转移方法inkStyle,该方法基于内容图像的多层次拉普拉斯滤波输出,使用绘制网络在低分辨率下转移全局风格模式,使用更高分辨率的细节网络以金字塔的方式修改局部风格模式。实验结果表明,本文方法性能较好,视觉效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信