Partitioning based incremental marginalization algorithm for anonymizing missing data streams

Ankhbayar Otgonbayar, Zeeshan Pervez, K. Dahal
{"title":"Partitioning based incremental marginalization algorithm for anonymizing missing data streams","authors":"Ankhbayar Otgonbayar, Zeeshan Pervez, K. Dahal","doi":"10.1109/SKIMA47702.2019.8982399","DOIUrl":null,"url":null,"abstract":"The IoT and its applications are the inseparable part of modern world. IoT is expanding into every corner of the world where internet is available. IoT data streams are utilized by many organizations for research and business. To benefit from these data streams, the data handling party must secure the individuals’ privacy. The most common privacy preservation approach is data anonymization. However, IoT data provides missing data streams due to the varying device pool and preferences of individuals and unpredicted devices’ malfunctions of IoT. Minimization of missingess and information loss is very important for anonymizing of missing data streams. To achieve this, we introduce IncrementalPBM (Incremental Partitioning Based Marginalization) for anonymizing missig data streams. IncrementalPBM utilizes time based sliding window for missing data stream anonymization, and it aims to control the number of QIDs for anonymization while increasing the number of tuples for anonymization. Our experiment on real dataset showed IncrementalPBM is effective and efficient for anonymizing missing data streams compared to existing missing data stream anonymization algorithm. IncrementalPBM showed significant improvement; 5% to 9% less information loss, 4500 to 6000 more number of re-use anonymization while showing comparable clustering, suppression and runtime.","PeriodicalId":245523,"journal":{"name":"2019 13th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 13th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKIMA47702.2019.8982399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The IoT and its applications are the inseparable part of modern world. IoT is expanding into every corner of the world where internet is available. IoT data streams are utilized by many organizations for research and business. To benefit from these data streams, the data handling party must secure the individuals’ privacy. The most common privacy preservation approach is data anonymization. However, IoT data provides missing data streams due to the varying device pool and preferences of individuals and unpredicted devices’ malfunctions of IoT. Minimization of missingess and information loss is very important for anonymizing of missing data streams. To achieve this, we introduce IncrementalPBM (Incremental Partitioning Based Marginalization) for anonymizing missig data streams. IncrementalPBM utilizes time based sliding window for missing data stream anonymization, and it aims to control the number of QIDs for anonymization while increasing the number of tuples for anonymization. Our experiment on real dataset showed IncrementalPBM is effective and efficient for anonymizing missing data streams compared to existing missing data stream anonymization algorithm. IncrementalPBM showed significant improvement; 5% to 9% less information loss, 4500 to 6000 more number of re-use anonymization while showing comparable clustering, suppression and runtime.
基于分区的缺失数据流匿名化增量边缘化算法
物联网及其应用是现代世界不可分割的一部分。物联网正在扩展到世界上每一个可以使用互联网的角落。物联网数据流被许多组织用于研究和业务。为了从这些数据流中获益,数据处理方必须保护个人隐私。最常见的隐私保护方法是数据匿名化。然而,由于不同的设备池和个人偏好以及不可预测的设备物联网故障,物联网数据提供了缺失的数据流。丢失和信息丢失的最小化对于丢失数据流的匿名化是非常重要的。为了实现这一点,我们引入了IncrementalPBM(基于增量分区的边缘化)来匿名丢失的数据流。IncrementalPBM利用基于时间的滑动窗口进行缺失数据流匿名化,其目的是在增加匿名元组数量的同时控制匿名化qid的数量。在真实数据集上的实验表明,与现有的缺失数据流匿名化算法相比,IncrementalPBM对缺失数据流的匿名化是有效的。增量pbm表现出显著的改善;减少了5%到9%的信息丢失,重用匿名化的次数增加了4500到6000,同时显示出相当的聚类、抑制和运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信