The polynomial representation of Gray map on Zp2

Lanlan Liu, Meng Zhou
{"title":"The polynomial representation of Gray map on Zp2","authors":"Lanlan Liu, Meng Zhou","doi":"10.1109/ISI.2011.5984089","DOIUrl":null,"url":null,"abstract":"In this work we describe cyclic code on ℤ<inf>p2</inf> by polynomial representation, we also discuss polynomial representation of Nechaev permutation and the Gray and Nechaev-Gray maps. Then we extend Gerardo Vega and Jacques Wolfman's result in [1] on ℤ<inf>4</inf> to ℤ<inf>p2</inf> by polynomial representation of Gray and Nechaev-Gray maps. We proved that from a linear code ℤ<inf>p2</inf> of length n a linear cyclic code on ℤ<inf>p</inf> of length pn can be obtained using the polynomial representation of Gray and Nechaev-Gray maps on ℤ<inf>p</inf>. So our results are a generalization of the results in [1],[3],[4] where they only thought about the case of on ℤ<inf>4</inf>.","PeriodicalId":220165,"journal":{"name":"Proceedings of 2011 IEEE International Conference on Intelligence and Security Informatics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2011 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2011.5984089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we describe cyclic code on ℤp2 by polynomial representation, we also discuss polynomial representation of Nechaev permutation and the Gray and Nechaev-Gray maps. Then we extend Gerardo Vega and Jacques Wolfman's result in [1] on ℤ4 to ℤp2 by polynomial representation of Gray and Nechaev-Gray maps. We proved that from a linear code ℤp2 of length n a linear cyclic code on ℤp of length pn can be obtained using the polynomial representation of Gray and Nechaev-Gray maps on ℤp. So our results are a generalization of the results in [1],[3],[4] where they only thought about the case of on ℤ4.
Zp2上灰度映射的多项式表示
在本文中,我们用多项式表示法描述了在素数p2上的循环码,我们还讨论了Nechaev置换的多项式表示法以及Gray映射和Nechaev-Gray映射。然后通过Gray映射和Nechaev-Gray映射的多项式表示,将Gerardo Vega和Jacques Wolfman在[1]中关于l0 4的结果推广到l0 2。我们证明了在一个长度为n的线性码中,可以用多项式表示在一个长度为n的线性码中得到一个长度为pn的线性循环码。所以我们的结果是[1][3][4]中结果的推广,在[1][3][4]中他们只考虑了在4上的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信