Optimization techniques for parameter estimation of dynamic load models

Georgios A. Barzegkar-Ntovom, O. Ceylan, T. Papadopoulos
{"title":"Optimization techniques for parameter estimation of dynamic load models","authors":"Georgios A. Barzegkar-Ntovom, O. Ceylan, T. Papadopoulos","doi":"10.1109/UPEC.2017.8231997","DOIUrl":null,"url":null,"abstract":"In this paper, the performance of different optimization techniques is evaluated for the estimation of dynamic load model parameters. Two categories of methods are considered: the nonlinear least-squares-based and the population-based. The accuracy of the optimization methods is assessed by applying Monte Carlo simulations using artificially created distorted data. In order to represent different real-world conditions, the performance of the methods is evaluated considering different levels of signal-to-noise ratio. The findings of this paper indicate that similar results are obtained by the different techniques examined and verify the validity of the optimization methods for parameter estimation of dynamic load models.","PeriodicalId":272049,"journal":{"name":"2017 52nd International Universities Power Engineering Conference (UPEC)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 52nd International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2017.8231997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, the performance of different optimization techniques is evaluated for the estimation of dynamic load model parameters. Two categories of methods are considered: the nonlinear least-squares-based and the population-based. The accuracy of the optimization methods is assessed by applying Monte Carlo simulations using artificially created distorted data. In order to represent different real-world conditions, the performance of the methods is evaluated considering different levels of signal-to-noise ratio. The findings of this paper indicate that similar results are obtained by the different techniques examined and verify the validity of the optimization methods for parameter estimation of dynamic load models.
动态负荷模型参数估计的优化技术
本文对不同优化技术在动态负荷模型参数估计中的性能进行了评价。考虑了两类方法:基于非线性最小二乘的方法和基于总体的方法。优化方法的准确性是通过使用人工生成的失真数据进行蒙特卡罗模拟来评估的。为了代表不同的现实条件,考虑不同水平的信噪比,对方法的性能进行了评估。本文的研究结果表明,在不同的技术条件下,得到了相似的结果,验证了动态负荷模型参数估计优化方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信