Non linear analysis of epileptic EEG

J. E. Jacob, V. Vijith, K. Gopakumar
{"title":"Non linear analysis of epileptic EEG","authors":"J. E. Jacob, V. Vijith, K. Gopakumar","doi":"10.1109/SAPIENCE.2016.7684174","DOIUrl":null,"url":null,"abstract":"EEG contains immense information about the brain activity which cannot be understood completely by visual inspection. Powerful signal processing algorithms in EEG analysis can greatly assist the physicians and neurologists to extract such hidden information. It has been found that EEG being a time-varying and non-stationary signal, can be analyzed by non-linear methods. In this paper we tried to evaluate the non linear features, Correlation dimension, Approximate Entropy, Sample Entropy, and Hurst Exponent in epileptic and normal EEG and has obtained clear discrimination between them.","PeriodicalId":340137,"journal":{"name":"2016 International Conference on Data Mining and Advanced Computing (SAPIENCE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Data Mining and Advanced Computing (SAPIENCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAPIENCE.2016.7684174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

EEG contains immense information about the brain activity which cannot be understood completely by visual inspection. Powerful signal processing algorithms in EEG analysis can greatly assist the physicians and neurologists to extract such hidden information. It has been found that EEG being a time-varying and non-stationary signal, can be analyzed by non-linear methods. In this paper we tried to evaluate the non linear features, Correlation dimension, Approximate Entropy, Sample Entropy, and Hurst Exponent in epileptic and normal EEG and has obtained clear discrimination between them.
癫痫脑电图的非线性分析
脑电图包含了大量关于大脑活动的信息,这些信息是肉眼无法完全理解的。脑电图分析中强大的信号处理算法可以极大地帮助医生和神经科医生提取这些隐藏信息。研究发现,脑电信号是时变的非平稳信号,可以用非线性方法进行分析。本文对癫痫和正常脑电图的非线性特征、相关维数、近似熵、样本熵和赫斯特指数进行了评价,得到了两者的明显区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信