Learning and transferring motion style using Sparse PCA

K. Do, Nguyen Xuan Thanh, Hongchuan Yu
{"title":"Learning and transferring motion style using Sparse PCA","authors":"K. Do, Nguyen Xuan Thanh, Hongchuan Yu","doi":"10.25073/2588-1086/vnucsce.206","DOIUrl":null,"url":null,"abstract":"Motion style transfer is a primary problem in computer animation, allowing us to convert the motion of an actor to that of another one. Myriads approaches have been developed to perform this task, however, the majority of them are data-driven, which require a large dataset and a time-consuming period for training a model in order to achieve good results. In contrast, we propose a novel method applied successfully for this task in a small dataset. This exploits Sparse PCA to decompose original motions into smaller components which are learned with particular constraints. The synthesized results are highly precise and smooth motions with its emotion as shown in our experiments.","PeriodicalId":416488,"journal":{"name":"VNU Journal of Science: Computer Science and Communication Engineering","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Computer Science and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1086/vnucsce.206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Motion style transfer is a primary problem in computer animation, allowing us to convert the motion of an actor to that of another one. Myriads approaches have been developed to perform this task, however, the majority of them are data-driven, which require a large dataset and a time-consuming period for training a model in order to achieve good results. In contrast, we propose a novel method applied successfully for this task in a small dataset. This exploits Sparse PCA to decompose original motions into smaller components which are learned with particular constraints. The synthesized results are highly precise and smooth motions with its emotion as shown in our experiments.
使用稀疏PCA学习和转移运动风格
动作风格转换是计算机动画中的一个主要问题,它允许我们将一个演员的动作转换为另一个演员的动作。已经开发了无数种方法来执行这项任务,然而,它们中的大多数是数据驱动的,这需要一个大的数据集和一个耗时的时间来训练一个模型,以获得良好的结果。相比之下,我们提出了一种新的方法,成功地应用于小数据集的这项任务。这利用稀疏PCA将原始运动分解成更小的组件,这些组件是在特定的约束条件下学习的。实验结果表明,合成结果具有高度精确和流畅的情感运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信