The case for crowd computing

D. Murray, Eiko Yoneki, J. Crowcroft, S. Hand
{"title":"The case for crowd computing","authors":"D. Murray, Eiko Yoneki, J. Crowcroft, S. Hand","doi":"10.1145/1851322.1851334","DOIUrl":null,"url":null,"abstract":"We introduce and motivate \"crowd computing\", which combines mobile devices and social interactions to achieve large-scale distributed computation. An opportunistic network of mobile devices offers substantial aggregate bandwidth and processing power. In this paper, we analyse encounter traces to place an upper bound on the amount of computation that is possible in such networks. We also investigate a practical task-farming algorithm that approaches this upper bound, and show that exploiting social structure can dramatically increase its performance.","PeriodicalId":219018,"journal":{"name":"Networking, Systems, and Applications for Mobile Handhelds","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networking, Systems, and Applications for Mobile Handhelds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1851322.1851334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

Abstract

We introduce and motivate "crowd computing", which combines mobile devices and social interactions to achieve large-scale distributed computation. An opportunistic network of mobile devices offers substantial aggregate bandwidth and processing power. In this paper, we analyse encounter traces to place an upper bound on the amount of computation that is possible in such networks. We also investigate a practical task-farming algorithm that approaches this upper bound, and show that exploiting social structure can dramatically increase its performance.
群体计算的案例
我们引入并推动“人群计算”,将移动设备与社交互动相结合,实现大规模分布式计算。移动设备的机会网络提供了大量的总带宽和处理能力。在本文中,我们分析了相遇轨迹,以确定在这种网络中可能的计算量的上限。我们还研究了一个接近这个上限的实际任务农场算法,并表明利用社会结构可以显着提高其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信