An Improved Method of Equipment Thermal Effect on Command and Control System Based on BPNN and Incremental PID

Jie Tao, X. Wang, Peizhang Cui, Zhaorui Li, B. Guo
{"title":"An Improved Method of Equipment Thermal Effect on Command and Control System Based on BPNN and Incremental PID","authors":"Jie Tao, X. Wang, Peizhang Cui, Zhaorui Li, B. Guo","doi":"10.1109/ISoIRS57349.2022.00037","DOIUrl":null,"url":null,"abstract":"Constructed incremental PID controller which is based on the BPNN principle and incremental PID temperature control principle. The neural network is trained with 0.1°C resolution and appropriate temperature control error range as sample data, and the weight parameter matrix is obtained. Based on this parameter, the simulation and experimental verification are carried out for large lag nonlinear temperature control, and the experimental results of temperature control error ± 0.2°C are obtained. It is proved that the incremental PID parameter tuning method based on BPNN is feasible in the field of large lag nonlinear temperature precise control.","PeriodicalId":405065,"journal":{"name":"2022 International Symposium on Intelligent Robotics and Systems (ISoIRS)","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Intelligent Robotics and Systems (ISoIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISoIRS57349.2022.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Constructed incremental PID controller which is based on the BPNN principle and incremental PID temperature control principle. The neural network is trained with 0.1°C resolution and appropriate temperature control error range as sample data, and the weight parameter matrix is obtained. Based on this parameter, the simulation and experimental verification are carried out for large lag nonlinear temperature control, and the experimental results of temperature control error ± 0.2°C are obtained. It is proved that the incremental PID parameter tuning method based on BPNN is feasible in the field of large lag nonlinear temperature precise control.
基于BPNN和增量PID的指挥控制系统设备热效应改进方法
基于bp神经网络原理和增量PID温控原理,构造了增量PID控制器。以0.1℃的分辨率和适当的温控误差范围作为样本数据对神经网络进行训练,得到权重参数矩阵。基于该参数,对大滞后非线性温度控制进行了仿真和实验验证,得到了温度控制误差±0.2℃的实验结果。证明了基于bp神经网络的增量PID参数整定方法在大滞后非线性温度精确控制领域是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信