Relating Deep Neural Network Representations to EEG-fMRI Spatiotemporal Dynamics in a Perceptual Decision-Making Task

Tao Tu, Jonathan Koss, P. Sajda
{"title":"Relating Deep Neural Network Representations to EEG-fMRI Spatiotemporal Dynamics in a Perceptual Decision-Making Task","authors":"Tao Tu, Jonathan Koss, P. Sajda","doi":"10.1109/CVPRW.2018.00267","DOIUrl":null,"url":null,"abstract":"The hierarchical architecture of deep convolutional neural networks (CNN) resembles the multi-level processing stages of the human visual system during object recognition. Converging evidence suggests that this hierarchical organization is key to the CNN achieving human-level performance in object categorization [22]. In this paper, we leverage the hierarchical organization of the CNN to investigate the spatiotemporal dynamics of rapid visual processing in the human brain. Specifically we focus on perceptual decisions associated with different levels of visual ambiguity. Using simultaneous EEG-fMRI, we demonstrate the temporal and spatial hierarchical correspondences between the multi-stage processing in CNN and the activity observed in the EEG and fMRI. The hierarchical correspondence suggests a processing pathway during rapid visual decision-making that involves the interplay between sensory regions, the default mode network (DMN) and the frontal-parietal control network (FPCN).","PeriodicalId":150600,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2018.00267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The hierarchical architecture of deep convolutional neural networks (CNN) resembles the multi-level processing stages of the human visual system during object recognition. Converging evidence suggests that this hierarchical organization is key to the CNN achieving human-level performance in object categorization [22]. In this paper, we leverage the hierarchical organization of the CNN to investigate the spatiotemporal dynamics of rapid visual processing in the human brain. Specifically we focus on perceptual decisions associated with different levels of visual ambiguity. Using simultaneous EEG-fMRI, we demonstrate the temporal and spatial hierarchical correspondences between the multi-stage processing in CNN and the activity observed in the EEG and fMRI. The hierarchical correspondence suggests a processing pathway during rapid visual decision-making that involves the interplay between sensory regions, the default mode network (DMN) and the frontal-parietal control network (FPCN).
感知决策任务中深层神经网络表征与EEG-fMRI时空动态的关系
深度卷积神经网络(CNN)的层次结构类似于人类视觉系统在物体识别过程中的多层次处理阶段。越来越多的证据表明,这种分层组织是CNN在对象分类方面达到人类水平的关键[22]。在本文中,我们利用CNN的分层组织来研究人类大脑中快速视觉处理的时空动态。我们特别关注与不同程度的视觉模糊相关的感知决策。通过同时使用EEG-fMRI,我们证明了CNN的多阶段处理与EEG和fMRI观察到的活动之间的时间和空间层次对应关系。这种层次对应表明,在快速视觉决策过程中,存在一种涉及感觉区域、默认模式网络(DMN)和额顶叶控制网络(FPCN)之间相互作用的处理途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信