Francesco Lo Franco, M. Ricco, Riccardo Mandrioli, A. Viatkin, G. Grandi
{"title":"Current Pulse Generation Methods for Li-ion Battery Chargers","authors":"Francesco Lo Franco, M. Ricco, Riccardo Mandrioli, A. Viatkin, G. Grandi","doi":"10.1109/IESES45645.2020.9210664","DOIUrl":null,"url":null,"abstract":"Lithium-Ion batteries are playing an essential role in electric vehicles and renewable sources development. In order to reduce the charging time, high power chargers are necessary. However, lithium-ion chemistry limits the maximum current and charging speed. The diffusion rate of lithium ions into the electrodes determines the rate of charging. The slow lithium diffusion, especially experienced after high current rates, inevitably results in concentration polarization. The increase of the concentration polarization, in addition to the growth of the charging time, may lead to a faster battery deterioration. To deal with this obstacle, the Pulse Charging (PC) protocol has been proposed. There is no common opinion about the benefits given by the PC to the battery charging process in comparison with the conventional constant-current, constant-voltage (CCCV) protocol. Nevertheless, the purpose of this work is to provide an overview of possible methods that can be used to generate current pulses, without focusing on its advantages. Different techniques with the corresponding control algorithms have been implemented and analyzed through simulations in MATLAB/Simulink environment.","PeriodicalId":262855,"journal":{"name":"2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IESES45645.2020.9210664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Lithium-Ion batteries are playing an essential role in electric vehicles and renewable sources development. In order to reduce the charging time, high power chargers are necessary. However, lithium-ion chemistry limits the maximum current and charging speed. The diffusion rate of lithium ions into the electrodes determines the rate of charging. The slow lithium diffusion, especially experienced after high current rates, inevitably results in concentration polarization. The increase of the concentration polarization, in addition to the growth of the charging time, may lead to a faster battery deterioration. To deal with this obstacle, the Pulse Charging (PC) protocol has been proposed. There is no common opinion about the benefits given by the PC to the battery charging process in comparison with the conventional constant-current, constant-voltage (CCCV) protocol. Nevertheless, the purpose of this work is to provide an overview of possible methods that can be used to generate current pulses, without focusing on its advantages. Different techniques with the corresponding control algorithms have been implemented and analyzed through simulations in MATLAB/Simulink environment.