Feature extractionand incremental learning to improve activity recognition on streaming data

Nawel Yala, B. Fergani, A. Fleury
{"title":"Feature extractionand incremental learning to improve activity recognition on streaming data","authors":"Nawel Yala, B. Fergani, A. Fleury","doi":"10.1109/EAIS.2015.7368787","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an approach for an online human daily activity recognition system using motion sensor data. From the sensor readings, the system decides which activity is performed when the values change. It uses the previous measurements to interpret the current ones, without the need to wait for future information. The contributions of this study relies on the presentation of two methods to extract features from the sequence of sensor events, a clustering method to handle missing activity labels in dataset and an incremental learning method to deal with complexity and time spent in training since our system works on streaming data. Our methods are evaluated on publicly available real environment datasets.","PeriodicalId":325875,"journal":{"name":"2015 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS)","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIS.2015.7368787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we propose an approach for an online human daily activity recognition system using motion sensor data. From the sensor readings, the system decides which activity is performed when the values change. It uses the previous measurements to interpret the current ones, without the need to wait for future information. The contributions of this study relies on the presentation of two methods to extract features from the sequence of sensor events, a clustering method to handle missing activity labels in dataset and an incremental learning method to deal with complexity and time spent in training since our system works on streaming data. Our methods are evaluated on publicly available real environment datasets.
特征提取和增量学习改进流数据的活动识别
在本文中,我们提出了一种使用运动传感器数据的在线人体日常活动识别系统的方法。根据传感器读数,系统决定当值改变时执行哪个活动。它使用以前的测量来解释当前的测量,而不需要等待未来的信息。本研究的贡献依赖于两种从传感器事件序列中提取特征的方法,一种聚类方法用于处理数据集中缺失的活动标签,一种增量学习方法用于处理复杂性和训练时间,因为我们的系统工作在流数据上。我们的方法在公开可用的真实环境数据集上进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信