Analysis of longitudinal cracked two-dimensional functionally graded beams exhibiting material non-linearity

V. Ri̇zov
{"title":"Analysis of longitudinal cracked two-dimensional functionally graded beams exhibiting material non-linearity","authors":"V. Ri̇zov","doi":"10.3221/IGF-ESIS.41.61","DOIUrl":null,"url":null,"abstract":"An analytical study of longitudinal fracture in two-dimensional functionally graded cantilever beam configurations is carried-out with taking into account the non-linear behavior of material. A longitudinal crack is located arbitrary along the beam cross-section height. The material is functionally graded along the width as well as along the height of beam. The external loading consists of a bending moment applied at the free end of lower crack arm. Fracture is studied in terms of the strain energy release rate by considering the beam complementary strain energy. The solution derived is verified by analyzing the longitudinal crack with the help of the J-integral. The distribution of J-integral value along the crack front is studied. The effects of crack location, material gradients and non-linear behavior of material on the fracture are elucidated. The analysis reveals that the material non-linearity has to be taken into account in fracture mechanics based safety design of structural members and components made of two-dimensional functionally graded materials.","PeriodicalId":300868,"journal":{"name":"Fracture and Structural Integrity","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fracture and Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3221/IGF-ESIS.41.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

An analytical study of longitudinal fracture in two-dimensional functionally graded cantilever beam configurations is carried-out with taking into account the non-linear behavior of material. A longitudinal crack is located arbitrary along the beam cross-section height. The material is functionally graded along the width as well as along the height of beam. The external loading consists of a bending moment applied at the free end of lower crack arm. Fracture is studied in terms of the strain energy release rate by considering the beam complementary strain energy. The solution derived is verified by analyzing the longitudinal crack with the help of the J-integral. The distribution of J-integral value along the crack front is studied. The effects of crack location, material gradients and non-linear behavior of material on the fracture are elucidated. The analysis reveals that the material non-linearity has to be taken into account in fracture mechanics based safety design of structural members and components made of two-dimensional functionally graded materials.
材料非线性的纵向裂纹二维功能梯度梁分析
考虑材料的非线性特性,对二维功能梯度悬臂梁结构的纵向断裂进行了分析研究。纵裂缝沿梁的横截面高度任意分布。材料沿着梁的宽度和高度进行功能分级。外部荷载包括施加在下裂纹臂自由端的弯矩。考虑梁的互补应变能,从应变能释放率的角度研究断裂。利用j积分对纵向裂纹进行了分析,验证了所得解的正确性。研究了j积分值沿裂纹前缘的分布。分析了裂纹位置、材料梯度和材料非线性行为对断裂的影响。分析表明,基于断裂力学的二维功能梯度材料结构构件安全设计必须考虑材料的非线性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信