Calibrated Probabilistic QoT Regression for Unestablished Lightpaths in Optical Networks

Nicola Di Cicco, Memedhe Ibrahimi, C. Rottondi, M. Tornatore
{"title":"Calibrated Probabilistic QoT Regression for Unestablished Lightpaths in Optical Networks","authors":"Nicola Di Cicco, Memedhe Ibrahimi, C. Rottondi, M. Tornatore","doi":"10.1109/BalkanCom55633.2022.9900791","DOIUrl":null,"url":null,"abstract":"Quality-of-Transmission (QoT) regression of unestablished lightpaths is a fundamental problem in Machine Learning applied to optical networks. Even though this problem is well-investigated in current literature, many state-of-the-art approaches either predict point-estimates of the QoT or make simplifying assumptions about the QoT distribution. Because of this, during lightpath deployment, an operator might take either overly-aggressive or overly-conservative decisions due to biased predictions. In this paper, we leverage state-of-the-art Gradient Boosting Decision Tree (GBDT) models and recent advances in uncertainty calibration to perform QoT probabilistic regression for unestablished lightpaths. Calibration of a regression model allows for an accurate modeling of the QoT Cumulative Distribution Function (CDF) without any prior assumption on the QoT distribution. In our illustrative experimental results, we show that our calibrated GBDT model’s predictions provide accurate confidence interval estimates, even when only few samples per lightpath configuration are available at training time.","PeriodicalId":114443,"journal":{"name":"2022 International Balkan Conference on Communications and Networking (BalkanCom)","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Balkan Conference on Communications and Networking (BalkanCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BalkanCom55633.2022.9900791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Quality-of-Transmission (QoT) regression of unestablished lightpaths is a fundamental problem in Machine Learning applied to optical networks. Even though this problem is well-investigated in current literature, many state-of-the-art approaches either predict point-estimates of the QoT or make simplifying assumptions about the QoT distribution. Because of this, during lightpath deployment, an operator might take either overly-aggressive or overly-conservative decisions due to biased predictions. In this paper, we leverage state-of-the-art Gradient Boosting Decision Tree (GBDT) models and recent advances in uncertainty calibration to perform QoT probabilistic regression for unestablished lightpaths. Calibration of a regression model allows for an accurate modeling of the QoT Cumulative Distribution Function (CDF) without any prior assumption on the QoT distribution. In our illustrative experimental results, we show that our calibrated GBDT model’s predictions provide accurate confidence interval estimates, even when only few samples per lightpath configuration are available at training time.
光网络中未建立光路的校正概率QoT回归
未建立光路的传输质量(QoT)回归是机器学习应用于光网络中的一个基本问题。尽管这个问题在当前文献中得到了很好的研究,但许多最先进的方法要么预测QoT的点估计,要么对QoT分布做出简化的假设。因此,在光路部署过程中,由于预测存在偏差,作业者可能会采取过于激进或过于保守的决策。在本文中,我们利用最先进的梯度增强决策树(GBDT)模型和不确定性校准的最新进展,对未建立的光路执行QoT概率回归。校正回归模型可以在不预先假设QoT分布的情况下对QoT累积分布函数(CDF)进行准确建模。在我们的说明性实验结果中,我们表明我们校准的GBDT模型的预测提供了准确的置信区间估计,即使在训练时每个光路配置只有很少的样本可用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信