Indoor navigation using a diverse set of cheap, wearable sensors

Andrew R. Golding, N. Lesh
{"title":"Indoor navigation using a diverse set of cheap, wearable sensors","authors":"Andrew R. Golding, N. Lesh","doi":"10.1109/ISWC.1999.806640","DOIUrl":null,"url":null,"abstract":"Machine learning techniques are applied to the task of context awareness, or inferring aspects of the user's state given a stream of inputs from sensors worn by the person. We focus on the task of indoor navigation and show that, by integrating information from accelerometers, magnetometers and temperature and light sensors, we can collect enough information to infer the user's location. However, our navigation algorithm performs very poorly, with almost a 50% error rate, if we use only the raw sensor signals. Instead, we introduce a \"data cooking\" module that computes appropriate high-level features from the raw sensor data. By introducing these high-level features, we are able to reduce the error rate to 2% in our example environment.","PeriodicalId":356535,"journal":{"name":"Digest of Papers. Third International Symposium on Wearable Computers","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"184","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Papers. Third International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWC.1999.806640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 184

Abstract

Machine learning techniques are applied to the task of context awareness, or inferring aspects of the user's state given a stream of inputs from sensors worn by the person. We focus on the task of indoor navigation and show that, by integrating information from accelerometers, magnetometers and temperature and light sensors, we can collect enough information to infer the user's location. However, our navigation algorithm performs very poorly, with almost a 50% error rate, if we use only the raw sensor signals. Instead, we introduce a "data cooking" module that computes appropriate high-level features from the raw sensor data. By introducing these high-level features, we are able to reduce the error rate to 2% in our example environment.
室内导航系统使用多种廉价的可穿戴传感器
机器学习技术被应用于上下文感知任务,或者根据用户佩戴的传感器的输入流推断用户状态的各个方面。我们专注于室内导航任务,并展示了通过整合来自加速度计、磁力计、温度和光传感器的信息,我们可以收集足够的信息来推断用户的位置。然而,如果我们只使用原始传感器信号,我们的导航算法表现非常差,几乎有50%的错误率。相反,我们引入了一个“数据烹饪”模块,从原始传感器数据中计算适当的高级特征。通过引入这些高级特性,我们能够将示例环境中的错误率降低到2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信