Positive Entropy Using Hecke Operators at a Single Place

Zvi Shem-Tov
{"title":"Positive Entropy Using Hecke Operators at a Single Place","authors":"Zvi Shem-Tov","doi":"10.1093/IMRN/RNAA235","DOIUrl":null,"url":null,"abstract":"We prove the following statement: Let $X=\\text{SL}_n(\\mathbb{Z})\\backslash \\text{SL}_n(\\mathbb{R})$, and consider the standard action of the diagonal group $A 0$ is some positive constant. Then any regular element $a\\in A$ acts on $\\mu$ with positive entropy on almost every ergodic component. We also prove a similar result for lattices coming from division algebras over $\\mathbb{Q}$, and derive a quantum unique ergodicity result for the associated locally symmetric spaces. This generalizes a result of Brooks and Lindenstrauss.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAA235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We prove the following statement: Let $X=\text{SL}_n(\mathbb{Z})\backslash \text{SL}_n(\mathbb{R})$, and consider the standard action of the diagonal group $A 0$ is some positive constant. Then any regular element $a\in A$ acts on $\mu$ with positive entropy on almost every ergodic component. We also prove a similar result for lattices coming from division algebras over $\mathbb{Q}$, and derive a quantum unique ergodicity result for the associated locally symmetric spaces. This generalizes a result of Brooks and Lindenstrauss.
在一个地方使用Hecke算子的正熵
我们证明了以下命题:设$X=\text{SL}_n(\mathbb{Z})\backslash \text{SL}_n(\mathbb{R})$,并考虑对角线群$A 0$的标准作用是某个正常数。那么a $中的任意正则元素$a\作用于$\mu$,几乎在每一个遍历分量上都具有正熵。我们也证明了$\mathbb{Q}$上由除法代数产生的格的类似结果,并推导了相关局部对称空间的量子唯一遍历性结果。这概括了布鲁克斯和林登施特劳斯的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信