Using Centroid Keywords and Word Mover's Distance for Single Document Extractive Summarization

Dauken Seitkali, R. Mussabayev
{"title":"Using Centroid Keywords and Word Mover's Distance for Single Document Extractive Summarization","authors":"Dauken Seitkali, R. Mussabayev","doi":"10.1145/3342827.3342852","DOIUrl":null,"url":null,"abstract":"This paper presents unsupervised method of single document extractive summarization. The main idea behind the method is in selecting sentences based on Word Mover's Distance Similarity between each sentence and set of centroid keywords. This approach leverages both compositional property of word embeddings and advantages of recently discovered powerful text to text distance metric. ROUGE results on DUC 2002 data set showed that quality of produced summaries can compete with well-known state of the art systems. In this work we also discuss limitations of gold summaries in evaluating quality of summarization systems.","PeriodicalId":254461,"journal":{"name":"Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3342827.3342852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents unsupervised method of single document extractive summarization. The main idea behind the method is in selecting sentences based on Word Mover's Distance Similarity between each sentence and set of centroid keywords. This approach leverages both compositional property of word embeddings and advantages of recently discovered powerful text to text distance metric. ROUGE results on DUC 2002 data set showed that quality of produced summaries can compete with well-known state of the art systems. In this work we also discuss limitations of gold summaries in evaluating quality of summarization systems.
基于质心关键词和Word Mover距离的单文档提取摘要
提出了一种单文档抽取摘要的无监督方法。该方法的主要思想是基于Word Mover的每个句子与质心关键字集之间的距离相似度来选择句子。这种方法利用了词嵌入的组合特性和最近发现的强大的文本到文本距离度量的优点。在DUC 2002数据集上的ROUGE结果表明,所产生的摘要的质量可以与艺术系统的知名状态相竞争。在这项工作中,我们还讨论了黄金摘要在评估摘要系统质量方面的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信