Online critic-identifier-actor algorithm for optimal control of nonlinear systems

H. Lin, Qinglai Wei, Derong Liu
{"title":"Online critic-identifier-actor algorithm for optimal control of nonlinear systems","authors":"H. Lin, Qinglai Wei, Derong Liu","doi":"10.1109/ICICIP.2015.7388204","DOIUrl":null,"url":null,"abstract":"In this paper, a novel critic-identifier-actor optimal control scheme is designed for discrete-time affine nonlinear systems with uncertainties. A neural identifier is established to learn the unknown control coefficient matrix for affine nonlinear system working together with an actor-critic-based scheme to solve the optimal control in online and forward-in-time manner without value or policy iterations. A critic network learns approximate value function at each step. Another actor network attempts to improve the current policy based on the approximate value function. The weights of all neural networks (NNs) are updated at each sampling instant. Lyapunov theory is utilized to prove the stability of the closed-loop system. A simulation example is provided to illustrate the effectiveness of the developed method.","PeriodicalId":265426,"journal":{"name":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2015.7388204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a novel critic-identifier-actor optimal control scheme is designed for discrete-time affine nonlinear systems with uncertainties. A neural identifier is established to learn the unknown control coefficient matrix for affine nonlinear system working together with an actor-critic-based scheme to solve the optimal control in online and forward-in-time manner without value or policy iterations. A critic network learns approximate value function at each step. Another actor network attempts to improve the current policy based on the approximate value function. The weights of all neural networks (NNs) are updated at each sampling instant. Lyapunov theory is utilized to prove the stability of the closed-loop system. A simulation example is provided to illustrate the effectiveness of the developed method.
非线性系统最优控制的在线临界-辨识器-参与者算法
针对具有不确定性的离散仿射非线性系统,设计了一种新的临界-辨识器-行动者最优控制方案。建立了学习仿射非线性系统的未知控制系数矩阵的神经辨识器,并结合一种不需要值迭代和策略迭代的在线前向控制方法,实现了系统的最优控制。批评家网络在每一步学习近似值函数。另一个行动者网络试图基于近似值函数来改进当前的策略。在每个采样时刻更新所有神经网络的权值。利用李雅普诺夫理论证明了闭环系统的稳定性。仿真算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信