{"title":"On the Efficacy of Integrating Structural Struts With Lobed Mixers in Turbofan Engine Exhaust Systems","authors":"A. Wright, A. Mahallati, M. Conlon, J. Militzer","doi":"10.1115/GT2018-77168","DOIUrl":null,"url":null,"abstract":"The efficacy of integrating the lobed mixer with the core flow deswirling struts to create a single component for reducing the exhaust system length, beyond that attainable through mixer optimization alone, has been investigated. This investigation has been conducted via CFD simulations of a medium-bypass turbofan exhaust system at engine cruise representative conditions. Comparative analysis shows that integration augmented thrust output by about 0.02% while total pressure loss was increased by 3.6%. The aim of the study, to show that this new integrated design would have either minimal impact on or improve exhaust system performance, was confirmed. Comparisons of the flow fields and characteristic quantities downstream of the mixer also showed minimal impact on flow through the nozzle. The deswirling strut was offset by 0.65 Dh axially when integrated with the mixer, therefore it can be concluded that the exhaust system ducting could be reduced in length by this same measure — saving engine weight in the process.","PeriodicalId":114672,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Aircraft Engine; Fans and Blowers; Marine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2018-77168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The efficacy of integrating the lobed mixer with the core flow deswirling struts to create a single component for reducing the exhaust system length, beyond that attainable through mixer optimization alone, has been investigated. This investigation has been conducted via CFD simulations of a medium-bypass turbofan exhaust system at engine cruise representative conditions. Comparative analysis shows that integration augmented thrust output by about 0.02% while total pressure loss was increased by 3.6%. The aim of the study, to show that this new integrated design would have either minimal impact on or improve exhaust system performance, was confirmed. Comparisons of the flow fields and characteristic quantities downstream of the mixer also showed minimal impact on flow through the nozzle. The deswirling strut was offset by 0.65 Dh axially when integrated with the mixer, therefore it can be concluded that the exhaust system ducting could be reduced in length by this same measure — saving engine weight in the process.