Theory

Michael Kellmann, S. Kölling)
{"title":"Theory","authors":"Michael Kellmann, S. Kölling)","doi":"10.4324/9780429423857-2","DOIUrl":null,"url":null,"abstract":". This paper gives an introduction to the theory of oscillatory integrals of the first kind. Due to the complexity and multiplicity of critical points in higher dimensions, the decay of | I ( λ ) | in R d with d > 1 is far from clear-cut. However, using the method of stationary phase, one can establish an explicit decay property of the oscillatory integral in certain cases. We will first prove decay of | I ( λ ) | in the more straightforward case in which the phase function does not have a critical point. Next, we will analyze the case of a nondegenerate critical point and demonstrate some applications of oscillatory integrals in the study of partial differential equations.","PeriodicalId":418981,"journal":{"name":"Recovery and Stress in Sport","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recovery and Stress in Sport","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4324/9780429423857-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. This paper gives an introduction to the theory of oscillatory integrals of the first kind. Due to the complexity and multiplicity of critical points in higher dimensions, the decay of | I ( λ ) | in R d with d > 1 is far from clear-cut. However, using the method of stationary phase, one can establish an explicit decay property of the oscillatory integral in certain cases. We will first prove decay of | I ( λ ) | in the more straightforward case in which the phase function does not have a critical point. Next, we will analyze the case of a nondegenerate critical point and demonstrate some applications of oscillatory integrals in the study of partial differential equations.
理论
. 本文介绍了第一类振荡积分的理论。由于高维临界点的复杂性和多重性,当d > 1时,I (λ) |在R d中的衰减并不明显。然而,利用定相法,可以在某些情况下建立振荡积分的显式衰减性质。我们将首先在相函数没有临界点的更直接的情况下证明I (λ)的衰减。接下来,我们将分析非退化临界点的情况,并演示振荡积分在偏微分方程研究中的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信