{"title":"Combinatorial lower bound for list decoding of codes on finite-field Grassmannian","authors":"R. Agarwal","doi":"10.1109/ISIT.2011.6033970","DOIUrl":null,"url":null,"abstract":"Codes constructed as subsets of the projective geometry of a vector space over a finite field have been shown to have applications as random network error correcting codes. If the dimension of each codeword is restricted to a fixed integer, the code forms a subset of a finite-field Grassmannian, or equivalently, a subset of the vertices of the corresponding Grassmannian graph. These codes are referred to as codes on finite-field Grassmannian or more generally as subspace codes. In this paper, we study fundamental limits to list decoding codes on finite-field Grassmannian. By exploiting the algebraic properties of the Grassmannian graph, we derive a new lower bound on the code size for the first relaxation of bounded minimum distance decoding, that is, when the worst-case list size is restricted to two. We show that, even for small finite field size and code parameters, codes on finite-field Grassmannian admit significant improvements in code rate when compared to bounded minimum distance decoding.","PeriodicalId":208375,"journal":{"name":"2011 IEEE International Symposium on Information Theory Proceedings","volume":"423 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Information Theory Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2011.6033970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Codes constructed as subsets of the projective geometry of a vector space over a finite field have been shown to have applications as random network error correcting codes. If the dimension of each codeword is restricted to a fixed integer, the code forms a subset of a finite-field Grassmannian, or equivalently, a subset of the vertices of the corresponding Grassmannian graph. These codes are referred to as codes on finite-field Grassmannian or more generally as subspace codes. In this paper, we study fundamental limits to list decoding codes on finite-field Grassmannian. By exploiting the algebraic properties of the Grassmannian graph, we derive a new lower bound on the code size for the first relaxation of bounded minimum distance decoding, that is, when the worst-case list size is restricted to two. We show that, even for small finite field size and code parameters, codes on finite-field Grassmannian admit significant improvements in code rate when compared to bounded minimum distance decoding.