Nearest Neighbors Search Using Multi-GPU

Vinícius Nogueira, L. Amorim, I. Baratta, Gabriel Pereira, Renato Mesquita
{"title":"Nearest Neighbors Search Using Multi-GPU","authors":"Vinícius Nogueira, L. Amorim, I. Baratta, Gabriel Pereira, Renato Mesquita","doi":"10.5753/wscad.2021.18509","DOIUrl":null,"url":null,"abstract":"Meshless methods are increasingly gaining space in the study of electromagnetic phenomena as an alternative to traditional mesh-based methods. One of their biggest advantages is the absence of a mesh to describe the simulation domain. Instead, the domain discretization is done by spreading nodes along the domain and its boundaries. Thus, meshless methods are based on the interactions of each node with all its neighbors, and determining the neighborhood of the nodes becomes a fundamental task. The k-nearest neighbors (kNN) is a well-known algorithm used for this purpose, but it becomes a bottleneck for these methods due to its high computational cost. One of the alternatives to reduce the kNN high computational cost is to use spatial partitioning data structures (e.g., planar grid) that allow pruning when performing the k-nearest neighbors search. Furthermore, many of these strategies employed for kNN search have been adapted for graphics processing units (GPUs) and can take advantage of its high potential for parallelism. Thus, this paper proposes a multi-GPU version of the grid method for solving the kNN problem. It was possible to achieve a speedup of up to 1.99x and up to 3.94x using two and four GPUs, respectively, when compared against the single-GPU version of the grid method.","PeriodicalId":410043,"journal":{"name":"Anais do XXII Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD 2021)","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXII Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wscad.2021.18509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Meshless methods are increasingly gaining space in the study of electromagnetic phenomena as an alternative to traditional mesh-based methods. One of their biggest advantages is the absence of a mesh to describe the simulation domain. Instead, the domain discretization is done by spreading nodes along the domain and its boundaries. Thus, meshless methods are based on the interactions of each node with all its neighbors, and determining the neighborhood of the nodes becomes a fundamental task. The k-nearest neighbors (kNN) is a well-known algorithm used for this purpose, but it becomes a bottleneck for these methods due to its high computational cost. One of the alternatives to reduce the kNN high computational cost is to use spatial partitioning data structures (e.g., planar grid) that allow pruning when performing the k-nearest neighbors search. Furthermore, many of these strategies employed for kNN search have been adapted for graphics processing units (GPUs) and can take advantage of its high potential for parallelism. Thus, this paper proposes a multi-GPU version of the grid method for solving the kNN problem. It was possible to achieve a speedup of up to 1.99x and up to 3.94x using two and four GPUs, respectively, when compared against the single-GPU version of the grid method.
最近邻居搜索使用多gpu
无网格方法作为传统的基于网格的方法的替代方案,在电磁现象的研究中获得越来越大的空间。它们最大的优点之一是没有网格来描述模拟域。相反,区域离散化是通过沿区域及其边界扩散节点来完成的。因此,无网格方法基于每个节点与其所有邻居的相互作用,确定节点的邻居成为一项基本任务。k近邻(kNN)是一种众所周知的用于此目的的算法,但由于其高昂的计算成本,它成为这些方法的瓶颈。减少kNN高计算成本的替代方案之一是使用空间分区数据结构(例如,平面网格),允许在执行k近邻搜索时进行修剪。此外,用于kNN搜索的许多策略已经适用于图形处理单元(gpu),并且可以利用其并行性的高潜力。因此,本文提出了一种多gpu版本的网格方法来解决kNN问题。与网格方法的单gpu版本相比,使用两个和四个gpu分别可以实现高达1.99倍和3.94倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信