Bayesian Inferences and Forecasting in Spatial Time Series Models

Sung Duck Lee, Duck-Ki Kim
{"title":"Bayesian Inferences and Forecasting in Spatial Time Series Models","authors":"Sung Duck Lee, Duck-Ki Kim","doi":"10.1109/ICMLA.2010.170","DOIUrl":null,"url":null,"abstract":"The spatial time series data can be viewed as a set of time series collected simultaneously at a number of spatial locations with time. For example, The Mumps data have a feature to infect adjacent broader regions in accordance with spatial location and time. Therefore, The spatial time series models have many parameters of space and time. In this paper, We propose the method of bayesian inferences and prediction in spatial time series models with a Gibbs Sampler in order to overcome convergence problem in numerical methods. Our results are illustrated by using the data set of mumps cases reported from the Korea Center for Disease Control and Prevention monthly over the years 2001-2009, as well as a simulation study.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"522 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The spatial time series data can be viewed as a set of time series collected simultaneously at a number of spatial locations with time. For example, The Mumps data have a feature to infect adjacent broader regions in accordance with spatial location and time. Therefore, The spatial time series models have many parameters of space and time. In this paper, We propose the method of bayesian inferences and prediction in spatial time series models with a Gibbs Sampler in order to overcome convergence problem in numerical methods. Our results are illustrated by using the data set of mumps cases reported from the Korea Center for Disease Control and Prevention monthly over the years 2001-2009, as well as a simulation study.
空间时间序列模型中的贝叶斯推断与预测
空间时间序列数据可以看作是在多个空间位置随时间同时采集的一组时间序列。例如,腮腺炎数据具有根据空间位置和时间感染邻近更广泛区域的特征。因此,空间时间序列模型具有许多时空参数。为了克服数值方法的收敛性问题,提出了基于Gibbs采样器的空间时间序列模型的贝叶斯推理和预测方法。我们的结果是通过使用2001-2009年韩国疾病控制和预防中心每月报告的腮腺炎病例数据集以及模拟研究来说明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信