A novel traffic classification algorithm using machine learning

Liu Huixian, Li Xiaojuan
{"title":"A novel traffic classification algorithm using machine learning","authors":"Liu Huixian, Li Xiaojuan","doi":"10.1109/ICBNMT.2009.5348494","DOIUrl":null,"url":null,"abstract":"Internet traffic classification is of prime importance to the areas of network management and security monitoring, network planning, and QoS provision. But the Traditional Classifications depend on certain header fields (take port numbers for instance). These port-based and payload-based approaches will be out of action when a lot of applications like P2P use dynamic port numbers. Masquerading techniques and payload encryption requires a high amount of resource of computing and is easily infeasible in the protocol that unknown or encrypted. This paper describes a different level in network traffic-analysis using an unsupervised machine learning technique. In this approach flows are automatically classified by exploiting the different statistics characteristics of flow. We implement and estimate the efficiency and feasibility of our approach using data at different location of Internet. A new attribute selection method is put forward to determine optimal attribute set and evaluate the influence.","PeriodicalId":267128,"journal":{"name":"2009 2nd IEEE International Conference on Broadband Network & Multimedia Technology","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd IEEE International Conference on Broadband Network & Multimedia Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBNMT.2009.5348494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Internet traffic classification is of prime importance to the areas of network management and security monitoring, network planning, and QoS provision. But the Traditional Classifications depend on certain header fields (take port numbers for instance). These port-based and payload-based approaches will be out of action when a lot of applications like P2P use dynamic port numbers. Masquerading techniques and payload encryption requires a high amount of resource of computing and is easily infeasible in the protocol that unknown or encrypted. This paper describes a different level in network traffic-analysis using an unsupervised machine learning technique. In this approach flows are automatically classified by exploiting the different statistics characteristics of flow. We implement and estimate the efficiency and feasibility of our approach using data at different location of Internet. A new attribute selection method is put forward to determine optimal attribute set and evaluate the influence.
一种新的基于机器学习的流量分类算法
Internet流量分类对于网络管理和安全监控、网络规划和QoS提供等领域具有重要意义。但是传统分类依赖于某些报头字段(例如端口号)。当许多应用程序(如P2P)使用动态端口号时,这些基于端口和基于有效负载的方法将不起作用。伪装技术和有效载荷加密需要大量的计算资源,并且在未知或加密的协议中容易不可行。本文描述了使用无监督机器学习技术进行网络流量分析的不同层次。在这种方法中,通过利用流的不同统计特征对流进行自动分类。我们使用互联网不同位置的数据来实施和评估我们的方法的效率和可行性。提出了一种新的属性选择方法来确定最优属性集并评估其影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信