Health Indicator Construction for System Health Assessment in Smart Manufacturing

M. Soualhi, K. Nguyen, K. Medjaher, D. Lebel, D. Cazaban
{"title":"Health Indicator Construction for System Health Assessment in Smart Manufacturing","authors":"M. Soualhi, K. Nguyen, K. Medjaher, D. Lebel, D. Cazaban","doi":"10.1109/PHM-Paris.2019.00016","DOIUrl":null,"url":null,"abstract":"Smart manufacturing is a part of the fourth industry revolution (Industry 4.0), which offers promising perspectives for high reliability, availability, maintainability, and safety production process. Indeed, smart monitoring methods, that are implemented in this kind of manufacturing process, allow efficient tracking of a system degradation in real time through appropriate sensors. Then, the sensor data are analyzed and processed to extract effective health indicators for fault detection, diagnostic and prognostics. This paper aims to develop a practical methodology for constructing a new health indicator based on heterogeneous sensor measurements to efficiently monitor system states. The proposed methodology is applied to extract the health indicator of a robot cutting tool (i.e. end-flat mill). This indicator is then used to diagnose the different fault types of the tool by an adaptive neuro-fuzzy inference system model.","PeriodicalId":119499,"journal":{"name":"2019 Prognostics and System Health Management Conference (PHM-Paris)","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Prognostics and System Health Management Conference (PHM-Paris)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM-Paris.2019.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Smart manufacturing is a part of the fourth industry revolution (Industry 4.0), which offers promising perspectives for high reliability, availability, maintainability, and safety production process. Indeed, smart monitoring methods, that are implemented in this kind of manufacturing process, allow efficient tracking of a system degradation in real time through appropriate sensors. Then, the sensor data are analyzed and processed to extract effective health indicators for fault detection, diagnostic and prognostics. This paper aims to develop a practical methodology for constructing a new health indicator based on heterogeneous sensor measurements to efficiently monitor system states. The proposed methodology is applied to extract the health indicator of a robot cutting tool (i.e. end-flat mill). This indicator is then used to diagnose the different fault types of the tool by an adaptive neuro-fuzzy inference system model.
面向智能制造系统健康评估的健康指标构建
智能制造是第四次工业革命(工业4.0)的一部分,它为高可靠性、可用性、可维护性和安全生产过程提供了有希望的前景。实际上,在这种制造过程中实施的智能监控方法可以通过适当的传感器实时有效地跟踪系统退化。然后,对传感器数据进行分析和处理,提取有效的健康指标,用于故障检测、诊断和预测。本文旨在开发一种实用的方法来构建基于异构传感器测量的新型健康指标,以有效地监测系统状态。提出的方法被应用于提取机器人刀具(即立平铣刀)的健康指标。然后利用该指标通过自适应神经模糊推理系统模型对工具的不同故障类型进行诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信