In vivo imaging of microvasculature using optical coherence tomography

BJ Vakoc, R. Lanning, J. Tyrrell, T. Padera, L. Bartlett, T. Stylianopoulos, L. Munn, G. Tearney, D. Fukumura, Rk Jain, B. Bouma
{"title":"In vivo imaging of microvasculature using optical coherence tomography","authors":"BJ Vakoc, R. Lanning, J. Tyrrell, T. Padera, L. Bartlett, T. Stylianopoulos, L. Munn, G. Tearney, D. Fukumura, Rk Jain, B. Bouma","doi":"10.1109/PHOTWTM.2010.5421963","DOIUrl":null,"url":null,"abstract":"Summary In vivo imaging technologies drive the development of improved cancer therapies by revealing critical aspects of the complex pathophysiology of solid tumors in small animal models[1]. The abnormal vascular function, which predicts tumor malignant potential and presents broad barriers to effective treatment, has been studied at the subcellular size scale using multiphoton (MP) microscopy [2], and at significantly larger size scales using ultrasound, µCT and µMRI[3–5]. However, limited in vivo imaging approaches exist to study the vascular function at the network level, i.e., with sufficient resolution to discern smaller vessels while maintaining a field of view and penetration depth large enough to reveal interconnectivity and inhomogeneities across the tumor and surrounding tissue. One promising technology operating at this size scale is optical frequency domain imaging (OFDI) using Doppler-methods to detect blood flow.","PeriodicalId":367324,"journal":{"name":"2010 IEEE Photonics Society Winter Topicals Meeting Series (WTM)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Photonics Society Winter Topicals Meeting Series (WTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHOTWTM.2010.5421963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary In vivo imaging technologies drive the development of improved cancer therapies by revealing critical aspects of the complex pathophysiology of solid tumors in small animal models[1]. The abnormal vascular function, which predicts tumor malignant potential and presents broad barriers to effective treatment, has been studied at the subcellular size scale using multiphoton (MP) microscopy [2], and at significantly larger size scales using ultrasound, µCT and µMRI[3–5]. However, limited in vivo imaging approaches exist to study the vascular function at the network level, i.e., with sufficient resolution to discern smaller vessels while maintaining a field of view and penetration depth large enough to reveal interconnectivity and inhomogeneities across the tumor and surrounding tissue. One promising technology operating at this size scale is optical frequency domain imaging (OFDI) using Doppler-methods to detect blood flow.
使用光学相干断层成像的体内微血管成像
体内成像技术通过在小动物模型中揭示实体瘤复杂病理生理的关键方面,推动了癌症治疗方法的发展[1]。异常血管功能可以预测肿瘤的恶性潜能,并为有效治疗提供了广泛的障碍,人们已经利用多光子(MP)显微镜在亚细胞尺度上进行了研究[2],并利用超声、微CT和微MRI在更大的尺度上进行了研究[3-5]。然而,在网络水平上研究血管功能的活体成像方法有限,即具有足够的分辨率来识别较小的血管,同时保持足够大的视野和穿透深度,以显示肿瘤和周围组织的互联性和不均匀性。光学频域成像(OFDI)是一种很有前途的技术,可以在这种规模下使用多普勒方法来检测血流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信