DaRTree

Long Luo, Klaus-Tycho Foerster, Stefan Schmid, Hongfang Yu
{"title":"DaRTree","authors":"Long Luo, Klaus-Tycho Foerster, Stefan Schmid, Hongfang Yu","doi":"10.1145/3326285.3329063","DOIUrl":null,"url":null,"abstract":"The increasing amount of data replication across datacenters introduces a need for efficient bulk data transfer protocols which meet QoS guarantees, notably timely completion. We present DaRTree which leverages emerging optical reconfiguration technologies, to jointly optimize topology and multicast transfers, and thereby maximize throughput and acceptance ratio of transfer requests subject to deadlines. DaRTree is based on a novel integer linear program relaxation and deterministic rounding scheme. To this end, DaRTree uses multicast Steiner trees and adaptive routing based on the current network load. DaRTree provides its guarantees without need for rescheduling or preemption. Our evaluations show that DaRTree increases the network throughput and the number of accepted requests by up to 70%, especially for larger Wide-Area Networks (WANs). In fact, we also find that DaRTree even outperforms state-of-the-art solutions when the network scheduler is only capable of routing unicast transfers or when the WAN topology is bound to be non-reconfigurable.","PeriodicalId":269719,"journal":{"name":"Proceedings of the International Symposium on Quality of Service","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Symposium on Quality of Service","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3326285.3329063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

The increasing amount of data replication across datacenters introduces a need for efficient bulk data transfer protocols which meet QoS guarantees, notably timely completion. We present DaRTree which leverages emerging optical reconfiguration technologies, to jointly optimize topology and multicast transfers, and thereby maximize throughput and acceptance ratio of transfer requests subject to deadlines. DaRTree is based on a novel integer linear program relaxation and deterministic rounding scheme. To this end, DaRTree uses multicast Steiner trees and adaptive routing based on the current network load. DaRTree provides its guarantees without need for rescheduling or preemption. Our evaluations show that DaRTree increases the network throughput and the number of accepted requests by up to 70%, especially for larger Wide-Area Networks (WANs). In fact, we also find that DaRTree even outperforms state-of-the-art solutions when the network scheduler is only capable of routing unicast transfers or when the WAN topology is bound to be non-reconfigurable.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信