Improving GPR signal modelling for efficient characterization of multi-layered media

S. Maiti, S. K. Patra, A. Bhattacharya
{"title":"Improving GPR signal modelling for efficient characterization of multi-layered media","authors":"S. Maiti, S. K. Patra, A. Bhattacharya","doi":"10.1109/ICGPR.2016.7572680","DOIUrl":null,"url":null,"abstract":"We propose a plane wave model (PWM) which is derived based on analytical solution of a full wave model (FWM) applied to ground penetrating radar (GPR) signal propagation in layered media. The computation efficiency of PWM is enormous, and accuracy is comparable to FWMs. In this model, reflections from different interfaces and their higher order terms are expressed separately resulting in infinite number of terms for the forward model computation. The mathematical expression of PWM becomes complicated as the number of layers increases, and higher order reflections are considered for better accuracy of the model. It is observed that by applying suitable time window and limiting order of reflections based on GPR system dynamic range, the PWM expression can be simplified to a great extent. The effectiveness of the proposed method is verified by inverting synthetic data of a three layered (3L) media.","PeriodicalId":187048,"journal":{"name":"2016 16th International Conference on Ground Penetrating Radar (GPR)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 16th International Conference on Ground Penetrating Radar (GPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGPR.2016.7572680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a plane wave model (PWM) which is derived based on analytical solution of a full wave model (FWM) applied to ground penetrating radar (GPR) signal propagation in layered media. The computation efficiency of PWM is enormous, and accuracy is comparable to FWMs. In this model, reflections from different interfaces and their higher order terms are expressed separately resulting in infinite number of terms for the forward model computation. The mathematical expression of PWM becomes complicated as the number of layers increases, and higher order reflections are considered for better accuracy of the model. It is observed that by applying suitable time window and limiting order of reflections based on GPR system dynamic range, the PWM expression can be simplified to a great extent. The effectiveness of the proposed method is verified by inverting synthetic data of a three layered (3L) media.
改进探地雷达信号建模,有效表征多层介质
本文提出了一种适用于探地雷达(GPR)信号在层状介质中传播的全波模型(FWM)的解析解的平面波模型(PWM)。PWM的计算效率非常高,精度与FWMs相当。在该模型中,来自不同界面的反射和它们的高阶项是分开表示的,这使得正演模型计算的项数是无限的。随着层数的增加,PWM的数学表达式变得复杂,为了提高模型的精度,需要考虑高阶反射。结果表明,根据探地雷达系统动态范围,采用合适的时窗和反射限阶,可以大大简化PWM表达式。通过对三层(3L)介质的合成数据进行反演,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信