Assessment of terminal RNAV mixed equipage

D. R. Barker, B. Haltli, C. Laqui, P. MacWilliams, K.L. McKee
{"title":"Assessment of terminal RNAV mixed equipage","authors":"D. R. Barker, B. Haltli, C. Laqui, P. MacWilliams, K.L. McKee","doi":"10.1109/DASC.2004.1391263","DOIUrl":null,"url":null,"abstract":"Airlines continue to acquire or equip existing aircraft with improved and more capable avionics. Improvements such as the flight management system (FMS) allow aircraft to fly preplanned paths with precision. Attempts to take advantage of improved aircraft guidance to make approaches, arrivals, and departures in the terminal area more uniform and predictable are consequently a natural development in air traffic control. The use of area navigation (RNAV) routes is one example of exploiting the current avionics technology to improve/simplify operations. In this study we look at the consequences and implications for arrivals of the fact that not all aircraft are yet RNAV equipped. The interplay of equipped aircraft (that fly the route according to the FMS) and non-equipped aircraft (which must be vectored) was studied in terms of controller technique, controller training and familiarization, controller comfort level, and the resultant impact on the efficacy of the air traffic control (ATC) operation. The effects of specific factors such as variation in turn execution, variation in speed profiles and airspace use were objectively measured. Three arrival routes of increasing complexity were simulated. One complex route was examined using a varying mix of equipped and unequipped traffic at a fixed, steady state rate. Controller in the loop simulations indicate that the percentage of non-RNAV traffic that can be accommodated on a complex arrival route is about 20 percent, and show at the rates simulated, that it was not necessary to segregate equipped and non-equipped aircraft. The simulation results indicate that the tolerance for non-RNAV aircraft may be even higher for simple arrival routes. Other results of the controller in the loop simulations are presented in detail: reduced flying distances, reduced communications workload, reduced fuel burn and reduced variance in the inter-aircraft arrival times can all be correlated to increasing the percentage of the aircraft that are RNAV equipped. These results argue that there are benefits of aircraft flying RNAV routes.","PeriodicalId":422463,"journal":{"name":"The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.2004.1391263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Airlines continue to acquire or equip existing aircraft with improved and more capable avionics. Improvements such as the flight management system (FMS) allow aircraft to fly preplanned paths with precision. Attempts to take advantage of improved aircraft guidance to make approaches, arrivals, and departures in the terminal area more uniform and predictable are consequently a natural development in air traffic control. The use of area navigation (RNAV) routes is one example of exploiting the current avionics technology to improve/simplify operations. In this study we look at the consequences and implications for arrivals of the fact that not all aircraft are yet RNAV equipped. The interplay of equipped aircraft (that fly the route according to the FMS) and non-equipped aircraft (which must be vectored) was studied in terms of controller technique, controller training and familiarization, controller comfort level, and the resultant impact on the efficacy of the air traffic control (ATC) operation. The effects of specific factors such as variation in turn execution, variation in speed profiles and airspace use were objectively measured. Three arrival routes of increasing complexity were simulated. One complex route was examined using a varying mix of equipped and unequipped traffic at a fixed, steady state rate. Controller in the loop simulations indicate that the percentage of non-RNAV traffic that can be accommodated on a complex arrival route is about 20 percent, and show at the rates simulated, that it was not necessary to segregate equipped and non-equipped aircraft. The simulation results indicate that the tolerance for non-RNAV aircraft may be even higher for simple arrival routes. Other results of the controller in the loop simulations are presented in detail: reduced flying distances, reduced communications workload, reduced fuel burn and reduced variance in the inter-aircraft arrival times can all be correlated to increasing the percentage of the aircraft that are RNAV equipped. These results argue that there are benefits of aircraft flying RNAV routes.
终端RNAV混合装备评估
航空公司继续购买或为现有飞机配备改进和更强大的航空电子设备。飞行管理系统(FMS)等改进使飞机能够精确地按照预先规划的路线飞行。因此,利用改进的飞机制导技术使终点区的进近、到达和离开更加统一和可预测,是空中交通管制的自然发展。区域导航(RNAV)路线的使用是利用当前航空电子技术改进/简化操作的一个例子。在本研究中,我们着眼于并非所有飞机都配备了RNAV这一事实的后果和影响。从管制员技术、管制员培训和熟悉程度、管制员舒适度以及由此产生的对空中交通管制(ATC)运行效率的影响等方面,研究了装备飞机(根据FMS飞行路线)和非装备飞机(必须矢量化)的相互作用。具体因素的影响,如轮流执行的变化,变化的速度分布和空域的使用是客观测量。模拟了三种日益复杂的到达路线。在一条复杂的路线上,研究人员以固定的、稳定的速率,对装备和未装备的交通进行了不同的混合测试。控制器在循环模拟中表明,在复杂的到达路线上可以容纳的非rnav交通的百分比约为20%,并显示在模拟的速率下,没有必要将装备和未装备的飞机分开。仿真结果表明,对于简单的到达航线,非rnav飞机的容忍度可能更高。详细介绍了控制器在回路模拟中的其他结果:减少飞行距离,减少通信工作量,减少燃油消耗和减少飞机间到达时间的变化都可以与增加配备RNAV的飞机百分比相关。这些结果表明,飞机飞行RNAV路线有好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信