CacheIn: A Secure Distributed Multi-layer Mobility-Assisted Edge Intelligence based Caching for Internet of Vehicles

Ankur Nahar, Himani Sikarwar, Sanyam Jain, D. Das
{"title":"CacheIn: A Secure Distributed Multi-layer Mobility-Assisted Edge Intelligence based Caching for Internet of Vehicles","authors":"Ankur Nahar, Himani Sikarwar, Sanyam Jain, D. Das","doi":"10.1109/CCGrid57682.2023.00048","DOIUrl":null,"url":null,"abstract":"This paper investigates the feasibility of cache content prediction and coherence in the context of secure communication and search. We introduce a distributed multi-tier mobility-assisted edge intelligence based caching framework for the Internet of Vehicles (IoVs), called CacheIn. The proposed framework leverages user preferences, data correlations, and mobility information to prefetch content to the IoV edge. To enable content management based on mobility, we propose a novel Normalized Hidden Markov Model (NM-HMM) that anticipates a vehicle's future position. The framework also utilizes a mobility-aware collaborative filtering-based federated learning (FL) technique to enhance cache hit, reduce latency, and protect user privacy. To ensure secure cross-domain data sharing and mitigate the risk of data breaches, we also propose an extended ciphertext policy attribute-based encryption (ECP-ABE) mechanism. Compared to content popularity-based caching schemes, CacheIn achieves up to 80%, 38%, and 55% improvement in cache hit ratio for different cache sizes, vehicle densities, and cache lookup scenarios. Moreover, our approach reduces key generation, encryption, and decryption times by 35 %.","PeriodicalId":363806,"journal":{"name":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid57682.2023.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the feasibility of cache content prediction and coherence in the context of secure communication and search. We introduce a distributed multi-tier mobility-assisted edge intelligence based caching framework for the Internet of Vehicles (IoVs), called CacheIn. The proposed framework leverages user preferences, data correlations, and mobility information to prefetch content to the IoV edge. To enable content management based on mobility, we propose a novel Normalized Hidden Markov Model (NM-HMM) that anticipates a vehicle's future position. The framework also utilizes a mobility-aware collaborative filtering-based federated learning (FL) technique to enhance cache hit, reduce latency, and protect user privacy. To ensure secure cross-domain data sharing and mitigate the risk of data breaches, we also propose an extended ciphertext policy attribute-based encryption (ECP-ABE) mechanism. Compared to content popularity-based caching schemes, CacheIn achieves up to 80%, 38%, and 55% improvement in cache hit ratio for different cache sizes, vehicle densities, and cache lookup scenarios. Moreover, our approach reduces key generation, encryption, and decryption times by 35 %.
CacheIn:一种基于安全分布式多层移动辅助边缘智能的车联网缓存
本文研究了在安全通信和搜索环境下缓存内容预测和一致性的可行性。我们为车联网(IoVs)引入了一种分布式多层移动辅助边缘智能缓存框架,称为CacheIn。该框架利用用户偏好、数据相关性和移动性信息,将内容预取到车联网边缘。为了实现基于移动性的内容管理,我们提出了一种新的规范化隐马尔可夫模型(NM-HMM),该模型可以预测车辆的未来位置。该框架还利用基于移动性的协同过滤的联邦学习(FL)技术来增强缓存命中、减少延迟并保护用户隐私。为了确保安全的跨域数据共享和降低数据泄露的风险,我们还提出了一种扩展的密文策略基于属性的加密(ECP-ABE)机制。与基于内容流行度的缓存方案相比,在不同的缓存大小、车辆密度和缓存查找场景下,CacheIn的缓存命中率分别提高了80%、38%和55%。此外,我们的方法将密钥生成、加密和解密时间减少了35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信