LP relaxations and Fuglede's conjecture

Aditya Siripuram, B. Osgood
{"title":"LP relaxations and Fuglede's conjecture","authors":"Aditya Siripuram, B. Osgood","doi":"10.1109/ISIT.2018.8437309","DOIUrl":null,"url":null,"abstract":"Consider a unitary (up to scaling) submatrix of the Fourier matrix with rows indexed by <tex>$\\mathcal{I}$</tex> and columns indexed by <tex>$\\mathcal{J}$</tex>. From the column index set <tex>$\\mathcal{J}$</tex> we construct a graph <tex>$\\mathcal{G}$</tex> so that the row index set <tex>$\\mathcal{I}$</tex> determines a max-clique. Interpreting <tex>$\\mathcal{G}$</tex> as coming from an association scheme gives certain bounds on the clique number, which has possible applications to Fuglede's conjecture on spectral and tiling sets.","PeriodicalId":246565,"journal":{"name":"2018 IEEE International Symposium on Information Theory (ISIT)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2018.8437309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Consider a unitary (up to scaling) submatrix of the Fourier matrix with rows indexed by $\mathcal{I}$ and columns indexed by $\mathcal{J}$. From the column index set $\mathcal{J}$ we construct a graph $\mathcal{G}$ so that the row index set $\mathcal{I}$ determines a max-clique. Interpreting $\mathcal{G}$ as coming from an association scheme gives certain bounds on the clique number, which has possible applications to Fuglede's conjecture on spectral and tiling sets.
LP松弛和Fuglede猜想
考虑傅里叶矩阵的酉子矩阵,其行以$\mathcal{I}$为索引,列以$\mathcal{J}$为索引。从列索引集$\mathcal{J}$构造一个图$\mathcal{G}$,使行索引集$\mathcal{I}$确定一个最大团。将$\mathcal{G}$解释为来自关联方案,给出了团数的一定界,这可能应用于Fuglede关于谱集和平铺集的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信