Machine Learning Techniques to Precaution of Emerging Disease in the Poultry Industry

Muhtasim Shafi Kader, Fizar Ahmed, Jobeda Akter
{"title":"Machine Learning Techniques to Precaution of Emerging Disease in the Poultry Industry","authors":"Muhtasim Shafi Kader, Fizar Ahmed, Jobeda Akter","doi":"10.1109/ICCIT54785.2021.9689828","DOIUrl":null,"url":null,"abstract":"Nowadays poultry is the best production of animal protein. With the amazing food diversity of Bangladesh, poultry chicken has a great impact on our daily life. But some major diseases are hampering this industry frequently. Serpentine illness such as infected bursal disease is more prevalent followed by colibacillosis, Newcastle disease, salmonellosis, chronic breathing disease, Avian Influenza, coccidiosis, aspergillosis, omphalitis, fowl pox, nutritional deficiency. Machine learning can be a useful health care way and also poultry disease precaution and detection. In advanced computer science diseases like Avian Influenza, Newcastle Disease are harmful to chicken. In order to prevent harmful consequences, it is important to concentrate about poultry infection on our very initial stage. We use a few qualities to evaluate our analysis regarding poultry illness and this attribute is one of the key items of the following disease. Perhaps we implement eleven machine classifiers to measure analysis by employing the following technologies, Logistic Regression Classifier, Naive Bayes Classifier, Multilayer Classifier, Stochastic Gradient Classifier, r Random Forest classifier, Bagging Classifier, Decision Tree Classifier, K Nearest Neighbor Classifier, XGB Classifier, AdaBoost Classifier & Gradient Boosting Classifier. The method we employed here gives maximum precision. Decision Tree Classifier has the best outcome yet.","PeriodicalId":166450,"journal":{"name":"2021 24th International Conference on Computer and Information Technology (ICCIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 24th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT54785.2021.9689828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Nowadays poultry is the best production of animal protein. With the amazing food diversity of Bangladesh, poultry chicken has a great impact on our daily life. But some major diseases are hampering this industry frequently. Serpentine illness such as infected bursal disease is more prevalent followed by colibacillosis, Newcastle disease, salmonellosis, chronic breathing disease, Avian Influenza, coccidiosis, aspergillosis, omphalitis, fowl pox, nutritional deficiency. Machine learning can be a useful health care way and also poultry disease precaution and detection. In advanced computer science diseases like Avian Influenza, Newcastle Disease are harmful to chicken. In order to prevent harmful consequences, it is important to concentrate about poultry infection on our very initial stage. We use a few qualities to evaluate our analysis regarding poultry illness and this attribute is one of the key items of the following disease. Perhaps we implement eleven machine classifiers to measure analysis by employing the following technologies, Logistic Regression Classifier, Naive Bayes Classifier, Multilayer Classifier, Stochastic Gradient Classifier, r Random Forest classifier, Bagging Classifier, Decision Tree Classifier, K Nearest Neighbor Classifier, XGB Classifier, AdaBoost Classifier & Gradient Boosting Classifier. The method we employed here gives maximum precision. Decision Tree Classifier has the best outcome yet.
机器学习技术预防家禽行业新出现的疾病
家禽是当今动物蛋白的最佳产地。孟加拉国的食物种类繁多,家禽鸡肉对我们的日常生活有很大的影响。但一些重大疾病频繁地阻碍着这一行业。蛇形疾病如感染性法氏囊病更为普遍,其次是大肠杆菌病、新城病、沙门氏菌病、慢性呼吸系统疾病、禽流感、球虫病、曲霉菌病、脐炎、禽痘、营养缺乏。机器学习可以是一种有用的医疗保健方式,也可以是家禽疾病的预防和检测。在先进的计算机科学疾病,如禽流感,新城疫病是对鸡有害的。为了防止有害后果,重要的是在我们的最初阶段集中注意家禽感染。我们使用一些品质来评估我们对家禽疾病的分析,这一属性是以下疾病的关键项目之一。也许我们可以实现11个机器分类器来测量分析,采用以下技术,逻辑回归分类器,朴素贝叶斯分类器,多层分类器,随机梯度分类器,r随机森林分类器,Bagging分类器,决策树分类器,K最近邻分类器,XGB分类器,AdaBoost分类器和梯度增强分类器。我们在这里采用的方法精度最高。决策树分类器有最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信