MDCStream

Félix Iglesias, Denis Ojdanic, Alexander Hartl, T. Zseby
{"title":"MDCStream","authors":"Félix Iglesias, Denis Ojdanic, Alexander Hartl, T. Zseby","doi":"10.1145/3388831.3388832","DOIUrl":null,"url":null,"abstract":"The establishment of modern technological paradigms like ubiquitous computing, big data, cyber-physical systems, or communication networks has strongly increased the need for efficient, effective data stream analysis. MDCStream is a MATLAB tool for generating temporal-dependent numerical datasets in order to stress-test stream data classification, clustering, and outlier detection algorithms. MDCStream is built on MDCGen, therefore showing a high flexibility for creating a wide diversity of data scenarios. To show an example of the potential of MDCStream, we tested a stream data clustering algorithm recently proposed in the literature with datasets generated with MDCStream. Datasets were designed to draw challenges related to space geometries and concept drift.","PeriodicalId":419829,"journal":{"name":"Proceedings of the 13th EAI International Conference on Performance Evaluation Methodologies and Tools","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th EAI International Conference on Performance Evaluation Methodologies and Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3388831.3388832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The establishment of modern technological paradigms like ubiquitous computing, big data, cyber-physical systems, or communication networks has strongly increased the need for efficient, effective data stream analysis. MDCStream is a MATLAB tool for generating temporal-dependent numerical datasets in order to stress-test stream data classification, clustering, and outlier detection algorithms. MDCStream is built on MDCGen, therefore showing a high flexibility for creating a wide diversity of data scenarios. To show an example of the potential of MDCStream, we tested a stream data clustering algorithm recently proposed in the literature with datasets generated with MDCStream. Datasets were designed to draw challenges related to space geometries and concept drift.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信