Mapping Urban Green Space Dynamics: a Semantic Earth Observation Data Cube Approach

D. Tiede, M. Sudmanns, H. Augustin, Larisa Paulescu, A. Baraldi
{"title":"Mapping Urban Green Space Dynamics: a Semantic Earth Observation Data Cube Approach","authors":"D. Tiede, M. Sudmanns, H. Augustin, Larisa Paulescu, A. Baraldi","doi":"10.31490/9788024846026-13","DOIUrl":null,"url":null,"abstract":"Urban green space mapping based on satellite imagery is now possible more frequently and over shorter timespans thanks to dense time-series of open and free Earth observation (EO) images (e.g. the Copernicus Sentinel-2 mission). Despite this data availability, many approaches still focus on identifying the annual maximum extent of urban green spaces instead of utilising the entire dense image stack to characterise seasonal dynamics. We aim to temporally inform urban green space delineations, which could be relevant for applications like urban heat mitigation or citizens’ urban green perception. We present a semantic EO data cube approach that allows ad-hoc, browser-based vegetation mapping for custom areas and timespans using transferable semantic models. We demonstrate the approach using a Sentinel-2 semantic EO data cube covering Austria, which makes use of every available Sentinel-2 observation since 2015 and where non-valid observations (e.g. cloud) can be masked out on an individual pixel basis to increase the number of valid observations for shorter timespans rather than relying on image-wide metadata. While we show results for the city of Vienna, the approach is transferrable to anywhere in Austria using the same infrastructure, or any other similar semantic EO data cube worldwide.","PeriodicalId":419801,"journal":{"name":"GIS Ostrava 2022 Earth Observation for Smart City and Smart Region","volume":"2018 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIS Ostrava 2022 Earth Observation for Smart City and Smart Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31490/9788024846026-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Urban green space mapping based on satellite imagery is now possible more frequently and over shorter timespans thanks to dense time-series of open and free Earth observation (EO) images (e.g. the Copernicus Sentinel-2 mission). Despite this data availability, many approaches still focus on identifying the annual maximum extent of urban green spaces instead of utilising the entire dense image stack to characterise seasonal dynamics. We aim to temporally inform urban green space delineations, which could be relevant for applications like urban heat mitigation or citizens’ urban green perception. We present a semantic EO data cube approach that allows ad-hoc, browser-based vegetation mapping for custom areas and timespans using transferable semantic models. We demonstrate the approach using a Sentinel-2 semantic EO data cube covering Austria, which makes use of every available Sentinel-2 observation since 2015 and where non-valid observations (e.g. cloud) can be masked out on an individual pixel basis to increase the number of valid observations for shorter timespans rather than relying on image-wide metadata. While we show results for the city of Vienna, the approach is transferrable to anywhere in Austria using the same infrastructure, or any other similar semantic EO data cube worldwide.
城市绿地动态映射:语义地球观测数据立方体方法
由于开放和免费的地球观测(EO)图像的密集时间序列(例如哥白尼哨兵2号任务),基于卫星图像的城市绿地测绘现在可以在更短的时间内更频繁地进行。尽管有这些可用的数据,但许多方法仍然侧重于确定城市绿地的年最大范围,而不是利用整个密集的图像堆栈来表征季节动态。我们的目标是为城市绿地划定提供临时信息,这可能与城市热缓解或市民城市绿色感知等应用相关。我们提出了一种语义EO数据立方体方法,该方法允许使用可转移的语义模型对自定义区域和时间跨度进行临时的、基于浏览器的植被映射。我们使用覆盖奥地利的Sentinel-2语义EO数据立方体演示了该方法,该方法利用了自2015年以来所有可用的Sentinel-2观测数据,并且可以在单个像素的基础上掩盖非有效观测(例如云),以增加较短时间内有效观测的数量,而不是依赖于图像范围的元数据。虽然我们展示了维也纳市的结果,但该方法可以使用相同的基础设施转移到奥地利的任何地方,或者全球任何其他类似的语义EO数据立方体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信