{"title":"Ensemble Method For Fault Detection & Classification in Transmission Lines Using ML","authors":"Muhammad Hayyan Bin Shahid, Akramul Azim","doi":"10.1109/SysCon53073.2023.10131138","DOIUrl":null,"url":null,"abstract":"Faults in a transmission line (TL) are the most common faults faced by almost every power station. Suppose these faults are not detected in time. In that case, they can result in multiple losses, such as a loss in an estimated power generation w.r.t predicted time and financial losses. In order to investigate the fault, the systematic approach of an engineer would be first to detect whether there is a fault or not. If a fault is detected in the transmission line, it should be classified as soon as possible. The following classifications would help the maintenance team identify the fault type: line fault, line-to-line fault, double line fault, triple line fault, single-line-to-ground fault, double line-to-ground fault, three-phase fault, and no fault. This paper proposes that the ensemble method, using the Machine Learning (ML) technique, will help the engineers detect and classify the faults in the transmission line. The investigation also trained and tested multiple ML classifiers to inform better recommendations. The shared research will help the user find the best possible ML results for predicting faults in the transmission line. Hence early and accurate fault detection will enhance safety and reliability and reduce interruption and downtime.","PeriodicalId":169296,"journal":{"name":"2023 IEEE International Systems Conference (SysCon)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Systems Conference (SysCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SysCon53073.2023.10131138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Faults in a transmission line (TL) are the most common faults faced by almost every power station. Suppose these faults are not detected in time. In that case, they can result in multiple losses, such as a loss in an estimated power generation w.r.t predicted time and financial losses. In order to investigate the fault, the systematic approach of an engineer would be first to detect whether there is a fault or not. If a fault is detected in the transmission line, it should be classified as soon as possible. The following classifications would help the maintenance team identify the fault type: line fault, line-to-line fault, double line fault, triple line fault, single-line-to-ground fault, double line-to-ground fault, three-phase fault, and no fault. This paper proposes that the ensemble method, using the Machine Learning (ML) technique, will help the engineers detect and classify the faults in the transmission line. The investigation also trained and tested multiple ML classifiers to inform better recommendations. The shared research will help the user find the best possible ML results for predicting faults in the transmission line. Hence early and accurate fault detection will enhance safety and reliability and reduce interruption and downtime.