Four Statistical Approaches for Multisensor Data Fusion under Non-Gaussian Noise

Wangqiang Niu, Jin Zhu, W. Gu, Jianxin Chu
{"title":"Four Statistical Approaches for Multisensor Data Fusion under Non-Gaussian Noise","authors":"Wangqiang Niu, Jin Zhu, W. Gu, Jianxin Chu","doi":"10.1109/CASE.2009.68","DOIUrl":null,"url":null,"abstract":"Multisensor data fusion methods for Gaussian noise are widely reported, while fusion approaches for non-Gaussian noise are seldom met in the literature. In this study, four statistical fusion methods are presented for a mixture of Gaussians noise. These four methods are the minimum variance approach, the maximum kurtosis approach, the minimum kurtosis approach, and the minimum mean absolute error approach. Preliminary numerical simulations demonstrate that the maximum kurtosis method shows the worst fusion performance, while the rest three methods shows equivalent better fusion performance.","PeriodicalId":294566,"journal":{"name":"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE.2009.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Multisensor data fusion methods for Gaussian noise are widely reported, while fusion approaches for non-Gaussian noise are seldom met in the literature. In this study, four statistical fusion methods are presented for a mixture of Gaussians noise. These four methods are the minimum variance approach, the maximum kurtosis approach, the minimum kurtosis approach, and the minimum mean absolute error approach. Preliminary numerical simulations demonstrate that the maximum kurtosis method shows the worst fusion performance, while the rest three methods shows equivalent better fusion performance.
非高斯噪声下多传感器数据融合的四种统计方法
针对高斯噪声的多传感器数据融合方法被广泛报道,而针对非高斯噪声的融合方法在文献中很少见到。在本研究中,提出了四种混合高斯噪声的统计融合方法。这四种方法分别是最小方差法、最大峰度法、最小峰度法和最小平均绝对误差法。初步的数值模拟表明,最大峰度法的融合性能最差,其余三种方法的融合性能相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信