Identifying similar people in professional social networks with discriminative probabilistic models

Suleyman Cetintas, Monica Rogati, Luo Si, Yi Fang
{"title":"Identifying similar people in professional social networks with discriminative probabilistic models","authors":"Suleyman Cetintas, Monica Rogati, Luo Si, Yi Fang","doi":"10.1145/2009916.2010123","DOIUrl":null,"url":null,"abstract":"Identifying similar professionals is an important task for many core services in professional social networks. Information about users can be obtained from heterogeneous information sources, and different sources provide different insights on user similarity. This paper proposes a discriminative probabilistic model that identifies latent content and graph classes for people with similar profile content and social graph similarity patterns, and learns a specialized similarity model for each latent class. To the best of our knowledge, this is the first work on identifying similar professionals in professional social networks, and the first work that identifies latent classes to learn a separate similarity model for each latent class. Experiments on a real-world dataset demonstrate the effectiveness of the proposed discriminative learning model.","PeriodicalId":356580,"journal":{"name":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2009916.2010123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Identifying similar professionals is an important task for many core services in professional social networks. Information about users can be obtained from heterogeneous information sources, and different sources provide different insights on user similarity. This paper proposes a discriminative probabilistic model that identifies latent content and graph classes for people with similar profile content and social graph similarity patterns, and learns a specialized similarity model for each latent class. To the best of our knowledge, this is the first work on identifying similar professionals in professional social networks, and the first work that identifies latent classes to learn a separate similarity model for each latent class. Experiments on a real-world dataset demonstrate the effectiveness of the proposed discriminative learning model.
用判别概率模型识别职业社交网络中相似的人
识别相似的专业人士是专业社交网络中许多核心服务的重要任务。用户信息可以从异构信息源获得,不同的信息源对用户相似度提供了不同的见解。本文提出了一种判别概率模型,用于识别具有相似个人资料内容和社交图相似模式的潜在内容和图类,并为每个潜在类学习专门的相似度模型。据我们所知,这是第一个在专业社交网络中识别相似专业人士的工作,也是第一个识别潜在类别并为每个潜在类别学习单独相似性模型的工作。在真实数据集上的实验证明了所提出的判别学习模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信