{"title":"Learning a Better Negative Sampling Policy with Deep Neural Networks for Search","authors":"Daniel Cohen, Scott M. Jordan, W. Bruce Croft","doi":"10.1145/3341981.3344220","DOIUrl":null,"url":null,"abstract":"In information retrieval, sampling methods used to select documents for neural models must often deal with large class imbalances during training. This issue necessitates careful selection of negative instances when training neural models to avoid the risk of overfitting. For most work, heuristic sampling approaches, or policies, are created based off of domain experts, such as choosing samples with high BM25 scores or a random process over candidate documents. However, these sampling approaches are done with the test distribution in mind. In this paper, we demonstrate that the method chosen to sample negative documents during training plays a critical role in both the stability of training, as well as overall performance. Furthermore, we establish that using reinforcement learning to optimize a policy over a set of sampling functions can significantly improve performance over standard training practices with respect to IR metrics and is robust to hyperparameters and random seeds.","PeriodicalId":173154,"journal":{"name":"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341981.3344220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
In information retrieval, sampling methods used to select documents for neural models must often deal with large class imbalances during training. This issue necessitates careful selection of negative instances when training neural models to avoid the risk of overfitting. For most work, heuristic sampling approaches, or policies, are created based off of domain experts, such as choosing samples with high BM25 scores or a random process over candidate documents. However, these sampling approaches are done with the test distribution in mind. In this paper, we demonstrate that the method chosen to sample negative documents during training plays a critical role in both the stability of training, as well as overall performance. Furthermore, we establish that using reinforcement learning to optimize a policy over a set of sampling functions can significantly improve performance over standard training practices with respect to IR metrics and is robust to hyperparameters and random seeds.