{"title":"A highly selective LNTA capable of large-signal handling for RF receiver front-ends","authors":"M. Mehrpoo, R. Staszewski","doi":"10.1109/RFIC.2013.6569556","DOIUrl":null,"url":null,"abstract":"To achieve ultimately flexible multi-core radio operation, wide-band receiver RF front-ends must be robust against interference well in excess of the requirements usually specified by a radio standard. In this paper, a highly selective, very linear low-noise transconductance amplifier (LNTA) capable of large-signal handling for current-mode receiver (RX) front-ends is proposed and implemented in 65-nm CMOS. It is shown that by combining on-chip highQ bandpass filters with a push/pull class-AB common-gate stage, a measured 1-dB desensitization point (B1dB) and large-signal IIP3 of +8 dBm and +20 dBm, respectively, can be achieved. In addition, by applying a noise cancellation technique, via an auxiliary push/pull class-AB common-source stage, the proposed LNTA measures a moderate NF of 5.9 dB, which is a very competitive number for such high value of B1dB. The circuit consumes 7.5 mA at 1.5 V.","PeriodicalId":203521,"journal":{"name":"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2013.6569556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
To achieve ultimately flexible multi-core radio operation, wide-band receiver RF front-ends must be robust against interference well in excess of the requirements usually specified by a radio standard. In this paper, a highly selective, very linear low-noise transconductance amplifier (LNTA) capable of large-signal handling for current-mode receiver (RX) front-ends is proposed and implemented in 65-nm CMOS. It is shown that by combining on-chip highQ bandpass filters with a push/pull class-AB common-gate stage, a measured 1-dB desensitization point (B1dB) and large-signal IIP3 of +8 dBm and +20 dBm, respectively, can be achieved. In addition, by applying a noise cancellation technique, via an auxiliary push/pull class-AB common-source stage, the proposed LNTA measures a moderate NF of 5.9 dB, which is a very competitive number for such high value of B1dB. The circuit consumes 7.5 mA at 1.5 V.