Order estimation in affine state-space neural networks

P. Gil, J. Henriques, A. Dourado, H. Duarte-Ramos
{"title":"Order estimation in affine state-space neural networks","authors":"P. Gil, J. Henriques, A. Dourado, H. Duarte-Ramos","doi":"10.1109/SMCIA.2005.1466961","DOIUrl":null,"url":null,"abstract":"The problem of order evaluation for an affine state-space neural network or equivalently the estimation of the number of neurons to be inserted in the hidden layer in a recurrent neural network is here addressed. The proposed method is based on a singular value decomposition applied to an oblique subspace projection given as the projection of the row space of future outputs into the past inputs-outputs row space, along the future inputs row space.","PeriodicalId":283950,"journal":{"name":"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMCIA.2005.1466961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The problem of order evaluation for an affine state-space neural network or equivalently the estimation of the number of neurons to be inserted in the hidden layer in a recurrent neural network is here addressed. The proposed method is based on a singular value decomposition applied to an oblique subspace projection given as the projection of the row space of future outputs into the past inputs-outputs row space, along the future inputs row space.
仿射状态空间神经网络的阶数估计
本文讨论了仿射状态空间神经网络的阶数评估问题,或等价于递归神经网络隐层中插入神经元数量的估计问题。所提出的方法是基于奇异值分解应用于斜子空间投影,该投影作为未来输出的行空间到过去输入输出行空间的投影,沿着未来输入行空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信