Distributed distortionless signal estimation in wireless acoustic sensor networks

A. Bertrand, J. Szurley, M. Moonen
{"title":"Distributed distortionless signal estimation in wireless acoustic sensor networks","authors":"A. Bertrand, J. Szurley, M. Moonen","doi":"10.5281/ZENODO.52407","DOIUrl":null,"url":null,"abstract":"Wireless microphone networks or so-called wireless acoustic sensor networks (WASNs) consist of physically distributed microphone nodes that exchange data over wireless links. In this paper, we propose a novel distributed distortionless signal estimation algorithm for noise reduction in WASNs. The most important feature of the proposed algorithm is that the nodes broadcast only single-channel signals while still obtaining optimal estimation performance, even in a scenario with multiple desired sources or speakers (in existing distributed methods, this is achieved only in scenarios with a single desired source). The idea is to create a one-dimensional desired signal subspace by using the same reference microphone at all the nodes. Since the theory is based on a distortionless signal estimation technique, namely linearly constrained minimum variance (LCMV) beamforming, we will show that this reference microphone does not need to be transmitted over the wireless link. We provide simulations to demonstrate the performance of the algorithm.","PeriodicalId":201182,"journal":{"name":"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.52407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Wireless microphone networks or so-called wireless acoustic sensor networks (WASNs) consist of physically distributed microphone nodes that exchange data over wireless links. In this paper, we propose a novel distributed distortionless signal estimation algorithm for noise reduction in WASNs. The most important feature of the proposed algorithm is that the nodes broadcast only single-channel signals while still obtaining optimal estimation performance, even in a scenario with multiple desired sources or speakers (in existing distributed methods, this is achieved only in scenarios with a single desired source). The idea is to create a one-dimensional desired signal subspace by using the same reference microphone at all the nodes. Since the theory is based on a distortionless signal estimation technique, namely linearly constrained minimum variance (LCMV) beamforming, we will show that this reference microphone does not need to be transmitted over the wireless link. We provide simulations to demonstrate the performance of the algorithm.
无线声传感器网络中的分布式无失真信号估计
无线麦克风网络或所谓的无线声学传感器网络(WASNs)由物理分布的麦克风节点组成,这些节点通过无线链路交换数据。在本文中,我们提出了一种新的分布式无失真信号估计算法用于wns的降噪。该算法最重要的特点是,即使在具有多个期望源或扬声器的场景中,节点仅广播单通道信号,同时仍能获得最佳估计性能(在现有的分布式方法中,这仅在具有单个期望源的场景中实现)。这个想法是通过在所有节点上使用相同的参考麦克风来创建一个一维的期望信号子空间。由于该理论基于无失真信号估计技术,即线性约束最小方差(LCMV)波束成形,因此我们将证明该参考麦克风不需要通过无线链路传输。我们提供了仿真来证明该算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信