Super-Resolution and Image Re-projection for Iris Recognition

E. Ribeiro, A. Uhl, F. Alonso-Fernandez
{"title":"Super-Resolution and Image Re-projection for Iris Recognition","authors":"E. Ribeiro, A. Uhl, F. Alonso-Fernandez","doi":"10.1109/ISBA.2019.8778581","DOIUrl":null,"url":null,"abstract":"Several recent works have addressed the ability of deep learning to disclose rich, hierarchical and discriminative models for the most diverse purposes. Specifically in the super-resolution field, Convolutional Neural Networks (CNNs) using different deep learning approaches attempt to recover realistic texture and fine grained details from low resolution images. In this work we explore the viability of these approaches for iris Super-Resolution (SR) in an iris recognition environment. For this, we test different architectures with and without a so called image re-projection to reduce artifacts applying it to different iris databases to verify the viability of the different CNNs for iris super-resolution. Results show that CNNs and image re-projection can improve the results specially for the accuracy of recognition systems using a complete different training database performing the transfer learning successfully.","PeriodicalId":270033,"journal":{"name":"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBA.2019.8778581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Several recent works have addressed the ability of deep learning to disclose rich, hierarchical and discriminative models for the most diverse purposes. Specifically in the super-resolution field, Convolutional Neural Networks (CNNs) using different deep learning approaches attempt to recover realistic texture and fine grained details from low resolution images. In this work we explore the viability of these approaches for iris Super-Resolution (SR) in an iris recognition environment. For this, we test different architectures with and without a so called image re-projection to reduce artifacts applying it to different iris databases to verify the viability of the different CNNs for iris super-resolution. Results show that CNNs and image re-projection can improve the results specially for the accuracy of recognition systems using a complete different training database performing the transfer learning successfully.
虹膜识别的超分辨率和图像重投影
最近的一些工作已经解决了深度学习为最多样化的目的揭示丰富、分层和判别模型的能力。特别是在超分辨率领域,卷积神经网络(cnn)使用不同的深度学习方法试图从低分辨率图像中恢复真实的纹理和细粒度细节。在这项工作中,我们探讨了这些方法在虹膜识别环境中用于虹膜超分辨率(SR)的可行性。为此,我们测试了不同的架构,使用和不使用所谓的图像重投影来减少伪影,将其应用于不同的虹膜数据库,以验证不同cnn对虹膜超分辨率的可行性。结果表明,cnn和图像重投影可以提高结果的准确性,特别是在使用完全不同的训练数据库进行迁移学习的识别系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信