Characterization of hematologic malignancies based on discrete orthogonal moments

R. Nava, Germán González, J. Kybic, B. Escalante-Ramírez
{"title":"Characterization of hematologic malignancies based on discrete orthogonal moments","authors":"R. Nava, Germán González, J. Kybic, B. Escalante-Ramírez","doi":"10.1109/IPTA.2016.7821039","DOIUrl":null,"url":null,"abstract":"During the last decade leukemia and lymphomas have been a hot topic in the biomedical area. Their diagnosis is a time-consuming task that, in many cases, delays treatments. On the other hand, discrete orthogonal moments (DOMs) are a tool recently introduced in biomedical image analysis. Here, we propose a combination of DOMs to help in the diagnosis of leukemia and lymphomas. We classify the IICBU2008-lymphoma dataset that includes three hematologic malignancies: chronic lymphocytic leukemia, follicular lymphoma, and mantle cell lymphoma. Our methodology analyzes such diseases in the hema-toxylin and eosin color space. We also include feature analysis to preserve the most discriminating characteristics of the malignant tissues. Finally, the classification of the samples is performed with kernel Fisher discriminant analysis. The accuracy is 93.85%. The results show the proposal could be useful in different biomedical applications.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7821039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

During the last decade leukemia and lymphomas have been a hot topic in the biomedical area. Their diagnosis is a time-consuming task that, in many cases, delays treatments. On the other hand, discrete orthogonal moments (DOMs) are a tool recently introduced in biomedical image analysis. Here, we propose a combination of DOMs to help in the diagnosis of leukemia and lymphomas. We classify the IICBU2008-lymphoma dataset that includes three hematologic malignancies: chronic lymphocytic leukemia, follicular lymphoma, and mantle cell lymphoma. Our methodology analyzes such diseases in the hema-toxylin and eosin color space. We also include feature analysis to preserve the most discriminating characteristics of the malignant tissues. Finally, the classification of the samples is performed with kernel Fisher discriminant analysis. The accuracy is 93.85%. The results show the proposal could be useful in different biomedical applications.
基于离散正交矩的恶性血液病表征
在过去的十年中,白血病和淋巴瘤一直是生物医学领域的热门话题。他们的诊断是一项耗时的任务,在许多情况下,延误了治疗。另一方面,离散正交矩(DOMs)是最近在生物医学图像分析中引入的一种工具。在这里,我们提出一种联合迟发性迟发性关节炎来帮助白血病和淋巴瘤的诊断。我们对iicbu2008 -淋巴瘤数据集进行分类,其中包括三种血液恶性肿瘤:慢性淋巴细胞白血病、滤泡性淋巴瘤和套细胞淋巴瘤。我们的方法分析这些疾病在血氧素和伊红颜色空间。我们还包括特征分析,以保留最具鉴别性的恶性组织的特征。最后,利用核费雪判别分析对样本进行分类。准确率为93.85%。结果表明,该方案可用于不同的生物医学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信